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ABSTRACT 

Energy demand functions based on Koyck lag transformation result in an 
MA error process that is generally ignored in estimated panel data 
models. This note explores the implications of this assumption by 
estimating panel energy demand functions with asymmetric price 
responses and an MA process modelled explicitly.  It is found that 
although the models with an MA term might be preferred statistically, 
they result in inferential problems implying that there might be a need to 
revisit the specification of panel energy demand functions used in a 
number of previous studies. 
 
 
JEL Classifications: C8, Q4. 
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1. Overview 

Gately and Huntington (2002), Griffin and Schulman (2005), Huntington (2006) and 

Adeyemi and Hunt (2007) all imposed a first-order geometric (or Koyck) lag on prices when 

specifying their panel data demand functions for energy.  This gives an econometric 

specification for demand where the reaction to prices is slower than that to income. As these 

papers note, deriving the estimating equation for these demand models implies a moving 

average (MA) error; however, none of them explicitly allowed for this in estimation. 

Adeyemi and Hunt (2007) noted that: 

 

“Ideally [these models] should be estimated with an allowance for the MA(1) 

error process to avoid potential specification errors; but, as far is known, is 

not possible with current available econometric software.” (p. 701). 
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This study addresses this concern by estimating a similar demand function for two alternative 

datasets explicitly allowing for the MA process, and assesses the implications. 

 

 

2. Methodology 

Based upon a first-order geometric (or Koyck) lag on prices the general equation for 

estimating an aggregate energy demand function is given by:1 
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(1) 

Where all variables are in logarithms, ite  (country i, year t) is energy consumption, ity is real 

income and Di and Dt are country-specific and time-specific dummy variables respectively.2 

Real energy prices itp , are decomposed as described by Gately and Huntington (2002) 

capturing the historical maximum max
itp , price rises below the previous maximum rec

itp and 

price cuts cut
itp .  The residuals in (1) follow an MA process  1 itit  , but the 

aforementioned studies discussed above replaced this with it and estimated using non-linear 

least squares (NLS). 

 

In order to estimate Equation (1) with the MA term included, a state-space representation 

estimated via a Kalman filter (KF) can be used as illustrated in the following (essentially 

tautological) derivation.3 The energy demand function can be written in a state space form 

where: 

                                                            
1 See Griffin and Schulman (2005) and Adeyemi and Hunt (2007) for a formal derivation 
2 Griffin and Schulman (2005) suggested using time dummies in such models to capture energy-saving technical 
progress which Adeyemi and Hunt (2007) likened to the Underlying Energy Demand Trend (UEDT) concept 
introduced by Hunt et al. (2003a and 2003b). 
3 Panel data based applications of the Kalman filter can be found as far back as Bryson and Ho (1969), as 
described by Jones (1993). Nonetheless, as far as is known, the application of longitudinal state space models 
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is the ‘observation equation’ and it  is defined by the ‘state equation’ and used to capture the 

moving average error process. Specifically, given the use of the Kalman filter, the state 

equation can be specified as a function of the previous period residual term: 

itit  1  (3) 

Here  represents the coefficient of MA adjustment. Given the Koyck lag derivation, all that 

remains to arrive at the desired specification for estimation is to restrict the MA term   equal 

to  . This is achieved here by substituting   for  directly within the filter equations 

rather than restricting these terms to be the same. Such filters are widely used to model MA 

processes for time series data, and are therefore a natural choice for application here. For 

discussion and further illustration of how these filters can be used to model MA processes see 

for example Hamilton (1994). 

 

The models including the MA terms, which are estimated using the data described in the 

following section, are compared with conventional NLS results that ignore the MA process. 

For consistency with the specifications tested in previous related literature, the general model 

is denoted Model III, and two additional restricted versions are also estimated in which i) the 

time dummies are removed (i.e. 0t ) designated as Model I; and ii)  price symmetry is 

assumed (i.e. crm   , represented simply as  ) designated as Model II (Huntington, 

2006; Adeyemi and Hunt, 2007). In addition, to try and give an indication of whether in a 

                                                                                                                                                                                         
for panel data has hitherto eluded the economics literature, but for a few examples, see for instance Chen (2009). 
There are examples of panel data studies with time varying parameters using other methodologies, for example 
Cai (2007) and Chang and Martinez-Chombo (2003) who use nonparametric methods, which are not recursive 
in nature and as such are less suited to modelling an MA process. 
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statistical sense different specifications are ‘preferred’ to alternative non-nested specifications, 

general J-tests are applied. 

 

 

3. Data 

Table 1: Summary statistics of Annual Datasets. 

  1: Industrial Sector  2: Whole Economy 

Descriptive 

statistics:  ite   ity   itp  
max
itp  

rec
itp  

cut
itp   ite   ity   itp  

max
itp  

rec
itp  

cut
itp  

Mean  4.272  1.801  1.947  0.115  0.204  ‐0.282  0.855  2.885  4.417  0.205  0.437  ‐0.605 

Median  4.242  1.839  1.972  0.067  0.185  ‐0.286  0.922  2.938  4.458  0.120  0.441  ‐0.575 

Minimum  2.875  1.258  1.542  0  0  ‐0.747  ‐1.488  1.256  3.592  0  0  ‐1.386 

Maximum  5.642  2.024  2.201  0.480  0.722  0  1.844  3.704  5.006  0.940  1.292  0 

General characteristics: 

Countries  15  17 

Start year  1962  1960 

End year  2003  2008 

Per capita  No  Yes 

 

Two alternative datasets are used. Dataset 1 is that used by Adeyemi and Hunt (2007), thus 

facilitating direct comparison with their results given their stated concern regarding the MA 

errors. This annual data set is for the industrial sector of 15 OECD countries between 1962 

and 2003, so that ite is aggregate industrial energy consumption (ktoe) ity  is the index of 

industrial output (2000=100), and itp is the industrial index of real energy prices (2000=100). 

Dataset 2 is for the whole economies of 17 OECD countries 1960 to 2008, so that here ite  

represents per capita total energy consumption (ktoe divided by population), ity  is per capita 
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GDP (billion 2000 US$ using PPPs divided by population) and itp  is the real index of 

aggregate energy prices (2005=100). The data are summarized in Table 1.4 

 

 

4. Results 

The results are given in Table 2. The non-nested J-tests for both datasets indicate that 

significant additional explanation is obtained by adding the residuals from the model with 

MA terms to the model without MA terms; but that adding the residuals from the model 

without MA terms to the model with MA terms is not significant. This suggests that explicitly 

modelling the MA terms makes a non-trivial statistical improvement to model performance 

for the datasets used, and hence suggests that statistically this is the preferred modelling 

approach.  

 

However, the MA models are still not ideal. There are a number of observed instances of 

undefined standard errors in these specifications. According to Gill and King (2004) such 

problems are not uncommon in non-linear estimation problems implying the need to consider 

alternative model specifications in such circumstances. Furthermore, there is the additional 

problem that the lag adjustment coefficients ( ) in the MA models are generally 

uncomfortably close to 1. 

 

Turning to the economic interpretation of the models, Table 2 shows that the coefficients are 

reasonably similar for the models with and without the MA terms. Furthermore, the time-

dummies shown in Figure 1 generate broadly similar dynamics;5 hence, from an economics 

                                                            
4Adeyemi and Hunt (2007) contains further details on the construction of Dataset 1, and further details on the 
construction of Dataset 2 can be found in Adeyemi et al. (2010). 
5See Griffin and Shulman (2005) footnote 18 for a description of how these are calculated. 



    Page 6 of 9 

perspective, little new is learnt by modelling the MA term. In particular, the inclusion or 

exclusion of the MA term would appear not to impact on the debate about whether to model 

asymmetric prices responses, given the relationships between the three models are very 

similar irrespective of whether the MA term is modelled explicitly or not.   

 

a) Dataset 1, Model 3.

(Solid line: Without MA, Dashed line: With MA)
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Figure 1: Estimated long run time dummy coefficients. 

 

 

5. Concluding remarks 

This note addresses the importance of explicitly modelling the MA term in dynamic panel 

energy demand studies based on the Koyck lag transformation, given this has generally been 

ignored in previous studies. Some of the tests conducted suggest that statistically, the models 
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with an MA term are preferred; however, these models also result in inferential problems due 

to poorly defined standard errors.  Although, bootstrap type methods might be used to 

overcome this, the underlying issue of model mis-specification remains, hence the underlying 

Koyck lag structure (coupled with the implicit assumption of homogeneity across the 

countries) would seem too restrictive for the data used. This suggests that the energy demand 

models might need to be re-specified with a less restrictive lag structure and, as alluded to for 

instance by Adeyemi and Hunt (2007), should maybe take more direct account of country 

specific heterogeneity in the samples. 
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Table 2: Estimation results (absolute t-values in parentheses). 

   Dataset 1: Industrial Sector  Dataset 2: Whole Economy 
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐Without MA‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐With MA‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐Without MA‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐With MA‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐ 

   Model I  Model II  Model III  Model I  Model II  Model III  Model I  Model II  Model III  Model I  Model II  Model III 

Estimated parameters 

 0.777  0.562  0.551  0.801  0.571  0.574  0.601  0.442  0.434  0.566  0.540  0.510 
15.565  8.916 8.811 27.156 12.066 13.569 10.563 7.433 7.261 17.281 17.446 NaN

 ‐0.014  0.050  ‐0.021  ‐0.010 
‐1.266 5.780 ‐2.282 ‐5.294

m ‐0.036  0.019  ‐0.029  ‐0.006  ‐0.041  ‐0.009  ‐0.036  ‐0.009 

‐3.214  1.163 ‐12.115 ‐1.170 ‐3.981 ‐0.704 ‐11.156 ‐2.553

 r ‐0.047  ‐0.020  ‐0.061  ‐0.036  ‐0.076  ‐0.035  ‐0.050  ‐0.009 

‐3.200  ‐1.071 ‐10.303 ‐5.366 ‐7.508 ‐2.609 ‐10.640 ‐2.614

c ‐0.021  ‐0.073  ‐0.037  ‐0.060  ‐0.051  ‐0.031  ‐0.022  ‐0.007 

‐1.492  ‐3.002  ‐6.368  ‐4.603  ‐4.989  ‐1.994  ‐5.589  ‐2.448 

 0.931  0.938  0.921  0.977  0.959  0.983  0.944  0.958  0.961  0.958  0.974  0.974 
83.871  81.983 64.765 NaN 1839.335 NaN 119.183 130.495 121.483 268.659 498.669 NaN

Diagnostics 
Time dummies No  Yes Yes No Yes Yes No Yes Yes No Yes Yes
Observations  615  615  615  615  615  615  816  816  816  816  816  816 
Parameters 20  58 60 35 73 75 22 67 69 39 84 86
Log likelihood  1558.43  1614.56  1618.66  1783.32  1791.93  1854.10  1619.19  1745.69  1747.08  1906.81  2144.03  2182.11 
Nested restrictions 

t 120.472  141.563  258.465  458.692 

m r c 8.208  124.328  0.269  199.915 

Non‐nested restrictions 
(add	Model	II)	 ‐0.052  0.088  290.044  ‐0.532 

(add	Model	I) 0.898  0.293  161.377  0.375 

=0(add	KF) ‐1.046  2.637  2.317  1.968  3.244  3.758 

=0(add	NLS)          0.183  0.025  ‐1.081           ‐0.532  0.375  0.405 

Notes:
(i) Nested restrictions tests report LR tests statistics. The degrees of freedom for the relevant chi‐squared critical test‐statistics are the difference in the number of estimated parameters 

between the restricted and unrestricted versions; 
(ii) Non‐nested restriction tests report the t‐statistics for the fitted values included in the J‐test auxiliary regressions; 
(iii) ‘NaN’ indicates that the element of the Hessian matrix relating to the coefficient was negative; hence asymptotic inference is not feasible in the standard fashion. 
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