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ABSTRACT 

This study contributes another route towards explaining and tackling 
‘food desert’ effects. It features the estimation of a (semi-parametric) trip 
attraction model for food superstores in the UK using a composite 
dataset. The data comprises information from the UK Census of 
Population, the NOMIS (National Online Manpower Information System) 
archive and traffic and site-specific data from the TRICS (Trip Rate 
Information Computer System) databases. The results indicate that traffic 
to a given food superstore, ceteris paribus, increases with household car 
ownership, store parking provision, site size (floor space), and distance to 
the nearest competitor. Furthermore, increases in public transport 
provision are shown to be associated with increasing car trips. This latter 
effect is discussed in the light of planning policy for development control 
purposes and a role linked to the reinforcement of ‘food deserts’. The 
results also reveal activity-specific household economies of scope and 
scale. It is suggested how these may also further perpetuate unsustainable 
development and ‘food desert’ characteristics. 
 
 
JEL Classification Numbers: C31, R12, R41. 
 
 
Key Words: Traffic Generation, Food Superstores, Food Deserts, Activity 
Based Travel, Sustainable Development, Modelling. 
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1. Introduction 

The growth and spatial placement of food superstores, alongside society's 

increasing reliance upon them is the subject of considerable controversy and 

debate in the UK and elsewhere (see, for example, Yim 1992, Clarke et al, 

2000, Smith and Sanchez 2003). This issue has brought to the fore concerns 

relating to the encouragement of traffic growth on local road networks with 

all the attendant negative externalities of emissions, congestion, higher 

accident rates etc. Concern has also been pointed to possible deleterious 

effects upon traditional city centre trading vitality and the flow of 

investment into the physical fabric of traditional inner urban shopping 

centres. The change in consumer trends toward food superstores in parts of 

the UK has also been highlighted as being a central element in the 

development of 'food deserts' (Wrigley 2002, Guy and David 2004).  Such 

phenomena are locations where access to food shops is made difficult for 

low income (and low mobility) households as a by-product of the lack of 

                                                 
# Acknowledgements  
Support from the UK Economic and Social Research Council (Project Number PTA-033-
2004-00035) is gratefully acknowledged, as is permission from the JMP Consultants 
Limited and the UK TRICS Consortium, to use the TRICS database. Thanks goes also to 
John Nankervis for comments received on an earlier draft of this paper. 
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nearby retail outlets willing and able to meet a demand for healthy, 

affordable food. Thus, the problems identified with food superstores relate 

both to their role in traffic generation and to their role in the development of 

a less sustainable urban spatial structure. Arguably a key element of such a 

structure is the increasing concentration of food provision towards food 

superstores, since smaller retailers may often not be able to compete on cost 

grounds for mobile consumers (a significant fraction of which are needed in 

order to retain economically viable retail customer bases). Moreover, such 

concentration may further perpetuate less sustainable lifestyles and also 

militate against transport-poor, lower income households, who become 

much more reliant on higher cost, less healthy food from nearby 

'convenience' stores (see Wrigley 2002; Wrigley et al 2002 and Cummins 

and Macintyre 2002 for a detailed consideration of the 'food deserts' issue 

and some policy responses). 

 

This study estimates a semi-parametric food superstore trip generation 

model, applying a bootstrap algorithm to re-sample the data matrix. It is 

accompanied by some sensitivity analysis to assess the robustness of the 

results and the policy implications drawn from them. The results contribute 

to the body of evidence by means of the estimation of a trip attraction model 

specifically for food superstores in the United Kingdom. The data held 

within the Trip Rate Information Computer System (TRICS) database from 

the period 1986-2003 is augmented with the UK Census and other data 

sources, to provide a rich dataset from which the model estimates are 

generated.  

 

At a conceptual level, this study operates in a general transport and 

development framework that is broadly consistent with a ‘predict and 

manage’ strategy as opposed to the ‘predict and provide’ approach of 

historic notoriety (see Berry 1960), or the more contemporary focus on 

‘Transport Demand Management’ (TDM) solutions (see for example, Meyer 

1997, 1999). Given that much of the literature generally neglects the 

potential synergies between these schools of thought, an eclectic approach is 

taken here. Trip attraction models have been developed for various land-
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uses, including food superstores and similar enterprises elsewhere (see, for 

example, Vickerman and Barmby 1984, Goldner and Portugal 2002, Tan 

and Fan 2003). Yet it is accepted that the growth of food superstores may 

well, in part, be a product of the diffusion of a more car-orientated culture 

and that the relationship between land use, spatial structure and mobility is 

undoubtedly complex and varied (see, for example Mackett 1993; Badoe 

and Miller 2001; Meurs and Haaijer 2001). 

 

The paper is organised as follows. Section 2 outlines the modelling strategy 

developed for this application, followed by a description of the data in 

section 3. The following section presents and discusses the results, with 

section 5 offering some concluding remarks.   

 

 

2. Modelling Strategy and Estimation 

It is widely understood that the demand for transport primarily stems from 

the desire to participate in activities or purchase goods (see, for example, 

Ettema and Timmermans 1997, for a more comprehensive discussion on the 

role of ‘activity’ in transport analysis). Transport is a necessary component 

in the production, delivery and consequent consumption of any good or 

service, thus its demand is nearly always derived from the demand for these 

other goods (Ortuzar and Willumsen 1990, Hensher and Button 2000 and 

Hibbs 2003).  

 

An Activity-Based Trip Model is therefore specified under the same 

auspices as a standard demand relationship for consumer behaviour, derived 

from standard micro-economics so that the demand for a good or service is 

determined by the desire and ability to purchase the good (e.g. 

characteristics of the good, and individual capacity to consume), as well as 

interactions with substitute markets/goods and/or effects. This can be 

summarised as follows: 

( )ddoodom GPSEEfT ,,,., =  (1) 

  DdOoMm ∋∋∋ ,,  



 4

 

Where ‘M’ is the set of travel modes, ‘O’ is the set of origins and ‘D’ is the 

set of destinations.  

 

Equation (1) implies that the desire to travel to a site (by any chosen mode 

of travel, for instance cycling, walking or taking public transport), is 

determined by factors that influence the ability and/or wish to partake in (or 

consume) the activity (or service) which that site offers. In particular, ‘E’ 

represents the economic characteristics of the local population, thus 

capturing the ability of individuals within that area to consume. ‘P’ is site 

specific attributes, which may be considered as features of that site which 

may serve to attract more trips. The variable ‘G’ suggests that wider 

geographic information may have some bearing on trip levels including site 

accessibility, and potential resistance offered by the existing geography. 

Finally ‘SE’ are socio-economic characteristics, which reflect (in part) 

lifestyles, and consequently, consumption choices within a given area. 

Previous multivariate trip generation models adopting similar relationships 

have been advocated for instance in Brady and Betz (1971), Hensher and 

Dalvi (1978) and Washington (2001). Although the inclusion of the physical 

characteristics of a site is not often introduced, probably due to the nature of 

the datasets used in previous work. The dependant variable ‘T’ in this 

instance, is the one way hourly average traffic flow. 

 

For empirical tractability a number of simplifying assumptions are required 

to ensure that activity specific elasticties are revealed, as follows; 

 

● ‘M’ is constrained to passenger vehicle traffic only. 

 

● ‘O’ is not known with certainty, and is therefore assumed to be a 

function of the surrounding areas characteristics. 

 

● ‘D’ is constrained to one type of destination, in this instance food 

superstores. i.e. the model estimates the levels of trips for only one 

individual type of activity. 
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The traffic count data is typically from established sites (i.e. not new 

developments), it is therefore assumed that the general customer base has 

levelled out after any initial opening ‘boom’, where the customer levels are 

essentially stable. Furthermore, given the model features no dynamic 

elements there is no distinction between long-run and short-run effects. It is 

not difficult to formulate hypotheses to suggest that initial opening levels 

could be (and are likely to be) higher OR lower than the estimates produced 

by the static model. Although initial opening levels should, on average, 

converge towards the model estimate over time. The estimated model does 

not differentiate between trips to the store from linked (or chained) trips or 

single purpose journeys. The framework therefore focuses on the 

fundamentals of the determinants of trip ‘attractions’ to a particular site. 

 

Given the discussion, the results of this study are based upon the following 

general specification;  

iiiii
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 (2) 

For j=(m+8) where m=1,…,7 and i=1,…,N. N is the number of observations 

in the dataset. 

 

Where FLOW = The average hourly flow of passenger 

vehicle traffic to site i . 

 CAR = Car ownership in the area of site i . 

 ACCESSIBILITY = Public service provision at site i . 

 DATE = Date of the survey for site i . 

 FLOORSPACE* = A measure of floor-space for site i . 

  Two alternatives are available;  

   (I) GFA = Gross Floor Area.  

   (II) RFA = Retail Floor Area. 

 RESISTANCE = Proxy for competition. 
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 SOCIOECON* = Offers representations of the socio-

economic characteristics of the area 

surrounding site i .  

  Three alternatives are available; 

   (a) AVHS = Average household size. 

   (b) AVLH = Proportion of households which are large. 

   (c) AVHC = Proportion of households with children. 

 EMP = Employment levels in the area of site i . 

 PARKING = On site parking at site i . 

 PFS = Petrol pump facilities. 

 LU1-LU7 = Land-zone indicators. 

 ECONOMY = Quality proxy. 

 SAT = Day identifier. 

 SUN = Day identifier. 

 MON-THURS = Day identifier. 

 ln  = Natural logarithm. 

 0β  = Constant or intercept term. 

 20,...,1β  = Estimated slope coefficients. 

 iµ  = Error term. 

 

and a-priori the following are expected for the slope coefficients, β0>0, 

β1>0, β2<0, β3>0, β4>0, β5>0, β6<0, β7>0, β8>0, β9>0, β17<0, β18>0, β19<0, 

β20<0. No prior expectations are made on the coefficients of the land zone 

dummies (β10 …β16). 

 

Given all the continuous variables are in natural logs, this log-linear 

equation is an activity-based model of derived demand and the estimated 

coefficients represent constant elasticities. The error term ( iµ ) is likely to 

be influenced by random factors but possibly also by some potential direct-

demand (which is not measurable) for travel (Mokhtarian, Salomon and 

Redmond (2001)), store offers etc. This is not likely to be a source of 

(noticeable) bias, as people who make journeys for the direct pleasure 

derived from driving, are far less likely to couple that journey with other 
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activities. The decision to stop at a supermarket would be considered an 

‘outlier’ (or rare event) in a journey where the primary activity is driving 

itself. 

 

Previous literature offers mixed views as to which is the appropriate floor-

space measure to use (gross or retail), mainly surrounding the relevance of 

the use of gross floor area which includes warehouse space. Retail floor 

area, on the other hand, arguably captures more directly the area of business 

operations (in terms of retail sites) that customers come into contact with. 

Ortuzar and Willumsen (1990, pp97-98) provide arguments in support of 

both approaches. Dasgupta, Raha and Sharman (1996) and Goldner and 

Portugal (2002) however, restrict their analysis to gross floor area. Tan and 

Fan (2003) in a study of peak hour trip rates to office and retail 

developments find mixed evidence mostly in favour of gross floor space. 

Given both the gross and retail are available, both are used in the estimation, 

denoted by models I and II.  

 

The expected negative coefficient on the SOCIOECON* variables may not 

be so intuitively obvious without some clarification. The expectation is that 

household levels of economies of scale and scope exist such that “…the cost 

per person of maintaining a given material standard of living may fall as 

household size rises…” (Nelson 1988, p1301). Following Lazear and 

Michael (1980), these economies arise due to the nature of certain goods 

used within the physical confines of the house, as certain goods cannot 

avoid being ‘public goods’, i.e. goods that provide benefits to everybody 

(positive externalities), not just those who purchase them. Lazear and 

Michael (1980), term these goods ‘family goods’. Examples include lighting 

in hallways and locks on shared entrances. It is not feasible to exclude 

people from the use of such goods.  

 

Such economies of scale in a non-nuclear household could be considered as 

economies of scope. These arise when two independent parties (i.e. two 

separate individuals living under one roof, as in shared accommodation for 

professionals/students etc.) are able to pool together their resources and 
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reduce the marginal cost faced by each in achieving the same level of utility. 

Lazear and Michael (1980) present an example-using door locks, though 

characterise this purely as a scale economy. Yet this scale economy is only 

realised through the recognition of scope. Thus in the case of trip making 

behaviour, two individuals within a shared house could car share and thus 

utilise space that may previously have gone un-used (assuming individual 

shopping load constraints are not biting). This arises at a cost which is lower 

to each individual (presuming costs are shared). Such arrangements could 

still provide each individual with the same amount of car-borne shopping 

resources that they would have enjoyed had they not pooled together.  

 

Nelson (1980) places an empirical value on the household economies of 

scale that were achieved in the US for food shopping. The results revealed 

with a strong degree of significance, that for households choosing to pool 

their resources 2 people can essentially live for the price of 1.19 people. The 

concept and existence of scale and scope economies would arise 

automatically with growing nuclear households, and would be a conscious 

decision within non-nuclear multiple person households. Following this 

reasoning, it is contended that the number of trips to a food store are 

negatively related to household size1. Further, larger households will also 

likely exhibit more diverse characteristics in their modal choices, i.e. as 

household size increases, the probability that one of the household members 

will prefer a non-car mode of travel to a food store also increases.  

 

In relation to the variable ‘SOCIOECON*’ from equation (3), three 

alternative measures (average household size (AVHS), average large 

households (AVLH) and average households with children (AVHC)) are 

considered in the empirical phase, that give differing estimates for policy 

variables based on representations of the surrounding area demographic 

                                                 
1  Furthermore, regardless of whether or not parking restrictions exist in a residential area 
(which in many, particularly urban, cases they do), there is typically finitely constrained 
space to store/park a car. As household size increases such spatial constraints may 
ultimately generate a stronger barrier to increasing car trips that could otherwise have been 
expected to emerge as a direct consequence of multiple car ownership.  
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decomposition. These are represented by a, b and c respectively in the 

results section. 

 

 

3. Data 

The data used in this study has been extracted from three sources, namely 

the TRICS database (Version 2004b), NOMIS 1986-2003 and the 2001 UK 

Census. The TRICS database2 provides an unbalanced pseudo-panel (see 

Baltagi 2001 or Mckenzie 2001) of traffic counts and site characteristics for 

various land use types (including food superstores) primarily with a view to 

informing planning policy and development control at the local level. The 

database is typically consulted to provide a guide of the expected traffic 

flows associated with any given new development and thus inform planning 

decisions, junction improvements and transport network management.  

 

The TRICS database provides in the main, cohorts for one time period only. 

The application of panel estimators may be feasible with a redefinition of 

the dataset (so as to produce cohorts over averages of groups over time3), 

however, this could lead to a loss of accuracy, due to the averaging which 

would be necessary (i.e. the imposed generality), and subsequently may 

introduce bias into the results. Consequently, all models are estimated by 

cross-sectional OLS.  

 

To enhance the TRICS database, it is augmented with data from the 

government sources, namely the NOMIS archive and the 2001 Census of 

Population, thus culminating in a rich database. The NOMIS archive 

provides information pertaining to labour market statistics for local and 

national areas, combining data from the Labour Force Survey (LFS), 

Claimant Count, Annual Business Inquiry (ABI), New Earnings Survey 

(NES) and the 1991 UK Census of Population with information from 1970 

                                                 
2  Further details and discussion of the TRICS database may be accessed via 
http://www.trics.org.uk 
3  The cohorts could be redefined, such that averages over groups (e.g. group 1 is the 
average values for all ‘mainstream’ superstores surveyed on a Friday) are created for 
sequential time periods. Multiple groups must be defined. 
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through to the present date, although only data from 1986 (onwards) is 

extracted for the purpose of this study.  

 

The 2001 UK Census of Population provides further data on socio-

demographic and economic characteristics for households, which is 

consistent with the data extracted from the NOMIS database. The data 

collection processes used in the 1991 and 2001 Censuses of Population are 

not perfectly consistent, resulting in a need to aggregate data together to 

create consistent variables, however no discernable difficulties are 

encountered in doing so. Variables from the Census (and NOMIS) data 

sources are considered as strong proxies (as opposed to more precise or 

exact values) due to the irregularity at which the data is collected.  

 

The variables considered in the empirical phase of this analysis are 

described and defined in Table 1. The specific land use dummy variables 

introduced in this table represent food superstores in specific types of 

geographical zones or locations as indicated in Planning Policy Guidance 

Note 13 DETR (2001).  

 

A dummy (ECONOMY) is used to separate the sites into the more 

‘mainstream’ food superstores (e.g. Tesco or Sainsburys), and the less 

‘mainstream’ food superstores which feature in much smaller chains and/or 

have a discount or low cost market orientation; taking the value 1 if the site 

is a ‘less mainstream’ store. EMP – is the average level of household 

employment in the surrounding area. Calculated as; 

 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

i

ii
i h

cp
EMP  

 

Where EMP = average employment per household, p = population of 

working age, c = claimant count rate and h = number of households in the 

area, i is the site identifier. This variable captures the average household’s 

ability to consume/purchase goods and services, where it is assumed there is 
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a direct and positive correlation between household employment and that 

household’s income level. 

 

Table 1: Source and Description for the Variables used in the Statistical 

Analysis 

Variable Description Data Source 
FLOW Average hourly flow of cars TRICS 
CAR Average household car ownership for the 

area  
TRICS 

ACCESSIBILITY A measure of public service accessibility 
(bus services) at the site 

TRICS 

DATE Date variable TRICS 
GFA Gross Floor Area TRICS 
RFA Retail Floor area TRICS 
RESISTANCE A measure of spatial resistance (via 

proximity to nearest similar competitor) 
TRICS 

AVHS Average Household size CENSUS/NOMIS 
AVLH Proportion of Large Households in the area CENSUS/NOMIS 
AVHC Proportion of households with children in the 

area 
CENSUS/NOMIS 

EMP Average household employment for the area CENSUS/NOMIS 
PARKING Total parking provision for the site TRICS 
PFS Does the site have a petrol station (1=yes) TRICS 
LU1 Commercial zone TRICS 
LU2 Edge of centre TRICS 
LU3 Edge of town centre TRICS 
LU4 Freestanding TRICS 
LU5 Industrial zone TRICS 
LU6 Neighbourhood zone TRICS  
LU7 Suburban area TRICS 
Base Town centre TRICS 
ECONOMY Is the Store 'less mainstream' (1=yes) Author Specified 
SAT TRICS 
SUN TRICS 
MON-THURS 

Dummy variables identifying the day of week 

TRICS 
 

AVHS, AVLH and AVHC as discussed above, are socio-economic variables 

reflecting population composition characteristics derived from Census and 

NOMIS data. AVHS measures the average household size, AVLH is a 

measure of the proportion of large households in the area (defined as 

households with three or more people) and AVHC is the proportion of 

households in the area with children.  

 

RESISTANCE – measures the distance to the nearest competitor (in 

kilometres). This variable proxies the generalised cost of travelling between 

the surveyed site and the nearest similar site, consequently acting as an 

indirect attraction factor.  
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Figure 1: Locations of Food Superstore Sites in the TRICS Database 

(1986-2003) 

 
 

The other variables included into the analysis are; PFS – which is a dummy 

indicating whether a site has a petrol station or not (i.e. an attraction factor 

for those who do drive cars, as they can buy their fuel also). CAR – which is 

a measure of the level of average household car ownership within the site 

area. PARKING, measures the number of parking spaces at a site, reflecting 

the ease at which a potential vehicle traveller can stop and shop.  

 

A number of dummies are also included to identify the day of week of the 

traffic count at the site (MON-THURS, SAT and SUN). The base weekday 

is Friday, which is incorporated into the intercept term. Finally, the variable 

ACCESSIBILTY captures the level of public service provision at each site.  

 

Figure 1 provides an illustration of the geographic extent of the observations 

around the UK. The coverage is dispersed around the country though largely 

concentrated, as is to be expected, around major urban conurbations. In 
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particular the site data is concentrated within the North West of England, the 

Central Lowlands of Scotland and the Southern Coastal Belt of England.  

 

Table 2: Composite Dataset Descriptive Statistics 
Continuous variables      
variable Number mean Std. Dev. Min  Max 
CAR 201 -0.136 0.320 -1.386 0.262 
ACCESSIBILITY  201 3.882 0.633 2.303 4.500 
DATE 201 1993.269 4.247 1986 2003 
GFA 201 8.565 0.400 7.097 9.218 
RFA 199 8.006 0.385 6.783 8.817 
RESISTANCE 201 1.120 0.866 -1.386 3.367 
AVHS 201 0.861 0.527 0.759 0.977 
AVLH 201 -1.109 0.137 -1.406 -0.846 
AVHC 201 -1.322 0.142 -1.639 -1.003 
EMPLOYMENT 201 0.190 0.205 -0.185 0.595 
PARKING 201 6.107 0.504 4.489 6.908 
      
Dummy Variables      
Variable Number Mean Std. Dev Median  
PFS  201 0.507 0.501 1  
LU1 201 0.099 0.099 0  
LU2 201 0.358 0.481 0  
LU3 201 0.020 0.140 0  
LU4 201 0.054 0.228 0  
LU5 201 0.035 0.184 0  
LU6 201 0.129 0.336 0  
LU7 201 0.194 0.396 0  
ECONOMY 201 0.094 0.293 0  
SATURDAY 201 0.313 0.465 0  
SUNDAY 201 0.144 0.352 0  
MON-THURS 201 0.104 0.306 0   

 

Table 2 provides the descriptive statistics for the data used in the empirical 

phase of the study.  

  

390 cases of food superstore developments were originally extracted from 

the TRICS database but depending on the model specification, 

approximately 190 cases were removed (varying by model specification), as 

many of these sites featured multiple instances of missing values for some 

important explanatory variables. There are no a priori expectations that the 

distribution of missing values were associated with any systematic biases, 

furthermore Shapiro-Wilk normality tests (see Shapiro and Wilk, 1965) on 

the dataset used in the final analysis reveals that no bias was imposed. 
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4. Results 

Given the two floor space variables and the three representations of the 

areas socio-economic characteristics, six versions of equation (2) were 

initially estimated by OLS (see Table 3).   

 

Table 3: Food Superstore Trip Generation Model Estimates (OLS) 

I II 

  (a) (b) (c) (a) (b) (c) 

Intercept 1.572* -0.64 -0.956 1.228 -0.7 -0.912 

CAR 0.202*** 0.198*** 0.165*** 0.214*** 0.207*** 0.178*** 

ACCESIBILITY 0.138*** 0.127** 0.142*** 0.141*** 0.133*** 0.147*** 

GFA 0.300** 0.316** 0.352***    

RFA    0.342** 0.348** 0.374*** 

RESISTANCE 0.084*** 0.083*** 0.088*** 0.103*** 0.102*** 0.107*** 

AVHS -1.757***   -1.581***   

AVLH  -0.623***   -0.539***  

AVHC   -0.567***   -0.467*** 

EMP 0.497*** 0.403*** 0.454*** 0.431*** 0.344*** 0.381*** 

PARKING 0.343*** 0.333*** 0.311*** 0.345*** 0.340*** 0.324*** 

PFS 0.134*** 0.129** 0.140*** 0.149*** 0.144*** 0.154*** 

LU1 0.381** 0.362** 0.438** 0.431** 0.420** 0.492** 

LU2 0.100 0.107 0.103 0.095 0.103 0.102 

LU3 -0.067 -0.049 -0.05 -0.016 0.001 0.006 

LU4 0.281*** 0.267*** 0.261*** 0.242*** 0.231** 0.227** 

LU5 0.102*** 0.073*** 0.117*** 0.087*** 0.070** 0.113** 

LU6 0.152* 0.158* 0.160* 0.159* 0.167** 0.171** 

LU7 0.214*** 0.207*** 0.223*** 0.173** 0.168** 0.180*** 

ECONOMY -0.336*** -0.323*** -0.313*** -0.311*** -0.302** -0.294** 

SAT 0.029 0.032 0.029 0.032 0.034 0.032 

SUN -0.657*** -0.650*** -0.651*** -0.654*** -0.649*** -0.649*** 

MON-THURS -0.258*** -0.256*** -0.258*** -0.251*** -0.247*** -0.247*** 

Observations 201 201 201 199 199 199 

RMSE 0.290 0.291 0.292 0.291 0.292 0.293 

Adj R-squared 0.6943 0.6927 0.6907 0.6895 0.687 0.6844 

P-values; ***=1%, **=5%, *=10% 
 

Specification tests on these initial estimates revealed non-normality and 

heteroskedasticity, thus making it problematic to make accurate statistical 

inference from the results given the possible biased standard errors and 

rendering standard t-tests ambiguous. As a result, a bootstrap algorithm was 

applied for estimating the models coefficients, thereby allowing the 
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assumption of normality to be dropped. The bootstrap algorithm used, is 

derived from a combination of a non-parametric estimation of the sample 

distribution and standard (model based) OLS parametric inference, thus 

resulting in a semi-parametric regression model (see the Appendix A1). 

Based on this semi-parametric approach, the variable DATE was always not 

significantly different from zero and hence omitted. This gives the six 

estimated models summarised in Table 4.  The significance levels reported 

in this Table are derived from one sample Achieved Significance Levels 

(ASL’s), see Appendix A2 and are subsequently exact as opposed to the 

standard (approximate) p-values reported in Table 3. 

 

Table 4: Food Superstore Trip Generation Model Estimates (Bootstrap) 
I II 

  (a) (b) (c) (a) (b) (c) 
Intercept  1.539* -0.633 -0.949  1.230 -0.665 -0.883 

CAR  0.202***  0.199***  0.166** 0.214***  0.208***  0.179*** 
ACCESIBILITY  0.141***  0.129**  0.144*** 0.143***  0.135***  0.149*** 

GFA  0.303**  0.320**  0.355***    
RFA    0.339** 0.345**  0.373*** 

RESISTANCE  0.084*** 0.083***  0.088***  0.102***  0.101***  0.107*** 
AVHS -1.724***   -1.557***   
AVLH  -0.613***   -0.534***  
AVHC   -0.555***   -0.458*** 
EMP  0.494***  0.402***  0.454***  0.432***  0.347***  0.384*** 

PARKING  0.338***  0.327***  0.306***  0.343***  0.337***  0.321*** 
PFS  0.136*** 0.130***  0.141***  0.150***  0.146***  0.155*** 
LU1  0.334*** 0.317***  0.382***  0.375***  0.366***  0.427*** 
LU2  0.102  0.109  0.105  0.096  0.105  0.103 
LU3 -0.067 -0.050 -0.052 -0.019 -0.003  0.001 
LU4  0.280***  0.266***  0.260**  0.241**  0.230**  0.225** 
LU5  0.109  0.080  0.124  0.096  0.077  0.120 
LU6  0.153*  0.158*  0.160*  0.161*  0.168**  0.172** 
LU7  0.214***  0.207*** 0.222***  0.172**  0.167** 0.178** 

ECONOMY -0.341*** -0.329*** -0.318*** -0.315*** -0.307** -0.298** 
SAT  0.029  0.032  0.030  0.032  0.034  0.032 
SUN -0.658*** -0.651*** -0.652*** -0.656*** -0.650*** -0.650*** 

MON-THURS -0.258*** -0.256*** -0.257*** -0.251*** -0.247*** -0.246*** 
Observations 201 201 201 199 199 199 

RMSE 0.276 0.276 0.277 0.276 0.277 0.278 
Adj R-squared 0.694 0.693 0.691 0.689 0.687 0.684 

Achieved Significance Level; ***=1%, **=5%, *=10% 
 

The observed difference in the results presented in Tables 3 and 4 are 

indicative of the bias associated with using standard OLS in the presence of 

non-normality (see Table A1 in the appendix for the observed bias). 

Through the assumptions imposed by the application of the bootstrap 

process, the coefficients given in Table 4 can be considered to be the true 

population parameters (given that the population is restricted to food 
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superstores), and therefore these parameters are the ones which are used for 

the subsequent inference purposes in the remainder of this paper. 

 

Interpreting the results in the presence of dummies requires a degree of care; 

base interpretation should initially be done where all dummy variables are 

set equal to zero. Following this, base interpretation then identifies the level 

of average hourly passenger-vehicle trips on a Friday, attracted to a 

‘standard’ food superstore without a petrol filling station, positioned in a 

town centre zone in the UK.  

 

The results given in Table 4 (aswell as those in Table 3) are in accordance 

with a-priori expectations, though the coefficient on the public transport 

accessibility variable warrants further discussion. In terms of the subsequent 

discussion and analysis, focus remains upon model ‘I(a)’, as this model 

reflects the ‘average’ household in the UK, and the floor-space measure 

which results in a marginally better specified model (in terms of R-squared 

and Root Mean Squared Error (RMSE)).  Due to the robustness of the 

results, across the alternative specifications, the following discussion and 

sensitivity analysis does not differentiate between the model specifications 

but rather focuses upon the qualitative implications of the results. 

 

The public transport variable provides what may at first be considered a 

counterintuitive result. A positive coefficient on this variable is observed, 

implying that as public service provision increases, so do trips to that site by 

car. Of course, the positive value may simply identify a correlation between 

bus provision and large business centres. Large superstores may attract 

higher rates of public service provision as the providers ‘realise’ that the 

large superstores are likely to offer a larger (and more profitable) customer 

base than the smaller stores. If bus services were indeed being sucked 

towards more profitable food superstore sites and away from serving other 

more traditional shopping areas, then this can be considered as contributing 

to the development and reinforcement of  'food deserts'. 
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Although there exists a desire to encourage increased levels of public 

transport use (thereby reducing some notion of the average environmental 

cost per customer), the results do suggest that less provision to/from food 

superstores is associated with lower car traffic levels. A reasonable simple 

explanation could be that public transport service providers may not be 

offering adequately desirable service levels at the origin end of food-

shopping journeys (whether to superstores or the town/city centre).  

 

The rest of the coefficients follow standard micro-economic theory of 

demand. It is observed that floor space, distance to the nearest food 

superstore competition, household type and size, parking provision and the 

inclusion of a petrol filling station at a site all return positive coefficients. 

These variables generally reflect the ability to substitute the store for 

alternative shopping centres, and the costs involved when doing so. 

 

A date variable was employed in initial specifications in an attempt to 

capture any exogenous growth effects over time not represented by the other 

variables in the model. However, they were insignificant in each run, 

suggesting that, although over recent years there has been increasing growth 

in the number of superstores being used by food retailers (as opposed to 

smaller store sizes), this growth in floor size has not created any shifts in the 

underlying behaviour of shoppers.  

 

The results are observed to be extremely robust across the different 

specifications. The stability of the coefficients with changes in (qualitative) 

model specifications is encouraging and the robustness suggests that the 

general theoretical framework is a generally sound reflection of the 

observed relationships for vehicle trip-making behaviour at food retail sites.  

The only real notable change in the estimated parameters being those for the 

alternative measures of a site area’s demography. These observed changes 

are intuitively consistent given the qualitative explanation of each; the 

measure AVHS is seen to have a coefficient of a greater magnitude than 

both AVLH and AVHC in absolute terms. The AVLH and AVHC measures 

essentially capture the nature of households that have greater restrictions 
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imposed upon their time. The lifestyles may be typified by fewer trips to a 

food superstore for larger grocery needs (e.g. having a family monthly food 

run). This applies as much to large households as it does to households with 

children, as the family routines may be continued into young adult life 

within the family home. Alternatively, people in large shared houses may 

choose to car-share to reduce cost (and perhaps make shopping another 

semi-social event). 

 

It should be noted that the results provide some response to the debate over 

which is the appropriate floor-space measure to use in the trip attraction 

models. The selection criteria discussed in the previous paragraph reveal 

that for food superstores, GFA is favoured. This suggests that, at least in 

terms of food shops, the attractiveness of a site is determined by their ability 

to meet demand, not just the goods they sell. Using RFA as a determinant 

reduces the explanatory power of the model by approximately 0.5 

percentage points (i.e. R-squared for I(a) = 0.694, R-squared for II(a) = 

0.689) in all cases. This change is not large enough to provide irrevocable 

evidence, but does imply that consumers consider the warehouse and 

administrative space in their trip making decision. This finding is consistent 

with that of Tan and Fan (2003) who find statistical evidence favouring the 

use of GFA at retail sites. 

 

Bonsall et al (1977), undertake a sensitivity analysis on key significant 

variables in order to help identify the most effective policies, based on the 

reality of their application. This is based on the understanding that as the 

variables were found to be significant, the results of policy changes can be 

expected to have significant effects too. Two types of parameter are 

considered; firstly are those normally considered fixed in nature (e.g. 

average car ownership within an area), the second type of parameter 

represents more feasible (in the short to medium term) policy alternatives 

that can be enacted upon in a reasonable time frame, for example changes in 

the level of public transport provision. It is hard to conceive that any of the 

variables analysed in this study must be fixed in the long-run, though it is 
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still prudent to consider that some of the variables included in this analysis 

will be ‘more fixed’ than others.  

 

The sensitivity analysis in Figure 2 is based upon the fitted equation: 

 
 

With all independent variables fixed at the mean (i.e. all ηX , where ηλ ≠ ), 

other than the policy variable under consideration (i.e. λX ). From this the 

predicted average hourly trip value ( iŶ ) is computed (for model I(a)). This 

is evaluated at regular intervals on the difference between the highest and 

lowest observed values for λX  within the dataset. i.e. 

 

( )min,max, λλ XXz −  

 

Where z  is the evaluating parameter and ranges between zero and one at 

regular intervals (100 in this case, or 1% intervals of the difference).  

 

Figure 2:  Effects of Key Parameter Changes upon Food Superstore 

Traffic Flow 
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Figure 2 identifies several important features with respect to the 

implementation of policies (for the average household) based on model 
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I(a)4. All relationships in this figure are non-linear and convex (as a result of 

the log-linear model) implying that a) as the actual value of the policy 

variables depicted in this graph decrease, so do the level of vehicle trips, b) 

the marginal effects of these policies decreases as actual traffic flows move 

towards the origin. This is true for all policy variables given in Figure 2, but 

most prominent for the PARKING variable. Analysing the results in this 

manner adds a new light to the estimated model, suggesting that in terms of 

feasible application, the most effective way of reducing vehicle trips to a 

supermarket is to decrease parking provision. The estimated model would 

suggest (via initial inspection of the coefficients) that the variable GFA is 

almost equally as effective as a policy variable as PARKING. However, the 

variability in the dataset (assuming this represents acceptable bounds from 

which policy makers can influence changes), implies that regardless of its 

equally large elasticity, imposing restrictions on floor-space) may not be the 

most feasible route to take in trying to reduce vehicle trip levels. A further 

example would be the comparison between EMP and CAR. The sensitivity 

analysis reveals them to be almost equally effective though the estimated 

coefficients would imply that changes in car ownership levels are markedly 

less effective in influencing car trip rates (see Table 3). 

 

Figure 3 extends the sensitivity analysis to include the effects of policy 

variables on each of the qualitatively different models I(a), I(b) and I(c) 

(though subsequently only considering the constant elasticities). The 

horizontal axis on this graph is the natural log of the average hourly flow, 

whilst the vertical axis identifies the policy measure considered. Consistent 

relationship directions are observed, with only very subtle changes in 

magnitude relative to the ‘base’ model I(a). Changes in elasticities across 

the three models provide insights into the relative importance of policy 

measures on large households and households with children (compared to 

the average household). Policy makers and authorities could potentially use 

this information to focus policy implementation at specific demographic 

groups. This graph exemplifies the robustness of the results in Table 4. It 
                                                 
4  Even though the focus is on model I(a), it is worth noting that the qualitative results are 
the same for I(b), I(c), II(a), II(b) and II(c). 
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reveals that in terms of policy based discussion, there is not much to justify 

a preference for models I(b) or I(c) over I(a), or indeed to think that, in the 

context of food superstores, that policy decisions can really be effectively 

focussed on specific socio-economic groups.  

 

Figure 3: Estimated Elasticities on Policy Variables, Models I(a), I(b) 

and I(c). 
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The three variables with the strongest impact upon traffic flow were 

identified as household size/composition, parking provision and floor-space. 

The results indicate that decreasing the number of parking spaces will 

reduce the trips to a food superstore by car. The graph also highlights the 

relationship observed that smaller households seem to make more trips to 

‘smaller’ food superstores (or at least a 1% change in GFA attracts more 

trips from large households and households with children than it does from 

the average household).  

 

A further key advantage of the TRICS database is the ability to explore in 

greater depth the role of land-zone type, that is not commonly presented in 

the literature. Banister et al (1990) identify, among other things, that further 

empirical research is required on this issue. This study addresses that 

identified concern to some extent. Figure 4 shows the effects of land-zone 
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placement upon trip rates to a mainstream food superstore (on a Friday) 

without a petrol filling station, when all parameters are held at their means. 

 

Figure 4: Estimated Elasticities on Land Zone Accessibility, Models 

I(a), I(b) and I(c)  
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Figure 4 therefore identifies the perceived level of accessibility for each of 

the demographic groups considered in this study. As with the policy 

variables, the elasticities on accessibility remain stable across each of the 

models (in terms of direction and magnitude), suggesting that fundamental 

relationships hold true across all representations of the population 

considered. Households with children have a preference towards food 

superstores in industrial and commercial zones, whilst large households in 

general (including shared houses) prefer them less, at least in relation to 

trips by car, when compared to the average household. It should be noted 

that land uses 2 and 3 were found to be statistically insignificant and 

consequently take values of zero. 

 

 

5. Concluding Remarks. 

In the face of increasing political focus on the external effects arising from 

traffic growth, there is overlaid additional controversy in the role that food 
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superstores play in creating and maintaining 'food deserts' in the UK. This 

paper offers insights on this phenomenon via a different route than previous 

related studies. These insights are made though the application of a semi-

parametric regression-based trip generation model. This is applied to UK 

traffic count and site specific data (the TRICS database). This data source 

has not previously been used for econometric model estimation. Some 

sensitivity analysis and basic policy modelling has been undertaken on the 

final preferred (Ia) model to show the effects of changes to key parameters.  

 

It is found that traffic to a given food superstore, ceteris paribus, increases 

with car ownership, parking provision, retail floor space, distance to the 

nearest food superstore competitor and, perhaps surprisingly, increased 

public transport provision. The latter effect is discussed in the light of a 

possible explanation linked to the 'food deserts' debate. Trips by car to a 

food superstore are also seen to decrease as average household size 

increases.  

 

That said, shopping in a large food superstore is generally a time consuming 

experience, therefore the decision to engage in such an activity will be 

consciously influenced and weighed against the size of the shopping baskets 

that are being filled (i.e. the extent of the grocery needs). The utility derived 

from the ‘bundle of goods’ purchased at each visit will be weighed against 

the costs involved in obtaining those goods. Even in the face of current 

changes to the convenience store market, as a general rule, goods are 

cheaper in the food superstores than in other outlets for food (due to market 

power being exerted along the vertical supply chain, economies of scale and 

specialisation). Households with large shopping requirements (e.g. 

established ‘large’ households or households with children) are shown to be 

particularly attracted towards food superstores. Furthermore, due to their 

larger shopping load requirements, the relative ease in which the trip can be 

conducted may actually be enhanced by the use of a car (due to increased 

comfort and security, door-to-door service etc). 
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Food superstores may therefore seek to justify their extensive requirements 

for land in terms of customer parking provision. However, given city space 

limitations (and subsequently land price constraints too) it may be less 

feasible for superstores to locate at inner urban locations in a way that meets 

the objectives of their business model. That is to say, on the general 

assumption that these food retailers act largely as profit maximisers, they 

would rationally aim to facilitate greater customer access. As these 

empirical results suggest, the level of parking provision significantly 

influences this ability. Thus, food superstore developers may rationally 

voice a preference towards outer urban areas, where it is easier to satisfy 

their parking ratio requirements and thereby contribute to the genesis and 

maintenance of food deserts. 

 

The scale and scope household economies identified through the 

SOCIOECON* variable(s), in connection with food superstore trips, 

suggests that communities with established larger household sizes will 

naturally be inclined towards large food superstores. Given the earlier 

arguments, these stores are increasingly less likely to be placed in inner 

urban locations. Thus, of specific relevance to communities characterised by 

car-owning, growing families, there is a statistically significant burden of 

evidence to suggest that with further development of food superstores 

aiming to serve them, food desert concerns will inevitably be perpetuated 

and accentuated for some other sections of the community. Such effects are 

intimately tied up with wider concerns about facilitating urban sprawl and 

achieving poor levels of progress in the development of more generally 

sustainable communities. 
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Appendix: The Bootstrap regression model. 

A1. The bootstrap model 

The results presented in Table 4 are derived from the following model; 
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Thus a standard log-linear (given that Y and X are the logarithmic 

transformations of the original variables) regression model is specified, 

where the coefficients are equal to the mean parameter estimate from B  

bootstrap replications of the regression model (where B = 100,000). Each 

replication of the model is conducted upon a unique ‘bootstrap’ data sample, 

which is a data set with the same dimensions as the original dataset (i.e. the 

same number of observations and variables), however each cell is uniquely 

drawn with replacement from the original dataset, with each individual 

observation in the original dataset having an equal probability of being 

drawn. On the assumption that the original dataset is truly representative of 

the entire population, then as the number of bootstrap draws increases, the 

more accurately we can observe the true distribution of the population data, 

and subsequently the distribution of the coefficients. For further explanation 

of the tenets of bootstrapping processes, see for example Efron and 

Tibshirani (1993), or for a brief overview of bootstrapping in econometrics 

see the survey article of Mackinnon (2002). A conventional ordinary least 

squares estimator is used to evaluate the coefficients for each bootstrap 

sample. 

 

The resulting model offers a theoretical advantage over the standard OLS 

regression as the bootstrap procedure reveals the full empirical distributions 

for the estimated coefficients. Thus means that the assumption of normality 

can be dropped and accurate inference can be conducted regardless of the 

shape of the distribution.  
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Table A1 indicates the bias of the OLS parameter estimates relative to the 

bootstrap parameter estimates. The values in this table are calculated as the 

OLS coefficient minus the bootstrapped coefficient, thereby creating a value 

which, when positive, indicates that the OLS estimate is overestimating the 

true parameter5. 

 

Table A1: Bias in OLS estimates. 
 I II 
 (a) (b) (c) (a) (b) (c) 
CAR 0.000 0.001 0.000 0.000 0.000 0.001 
ACCESIBILITY 0.003 0.002 0.002 0.003 0.002 0.002 
GFA 0.003 0.004 0.004    
RFA    -0.003 -0.002 -0.001 
RESISTANCE 0.000 0.000 0.000 -0.001 -0.001 0.000 
AVHS 0.034   0.024   
AVLH  0.010   0.005  
AVHC   0.012   0.009 
EMP -0.003 -0.001 0.000 0.001 0.003 0.003 
PARKING -0.005 -0.006 -0.006 -0.002 -0.003 -0.003 
PFS 0.002 0.002 0.001 0.001 0.002 0.001 
LU1 -0.047 -0.045 -0.057 -0.055 -0.054 -0.065 
LU2 0.002 0.002 0.001 0.002 0.001 0.001 
LU3 0.000 -0.001 -0.002 -0.003 -0.004 -0.004 
LU4 -0.001 -0.001 -0.001 -0.001 -0.001 -0.002 
LU5 0.008 0.007 0.007 0.008 0.007 0.006 
LU6 0.001 0.000 0.000 0.002 0.002 0.001 
LU7 -0.001 0.000 -0.001 -0.001 -0.001 -0.002 
ECONOMY -0.005 -0.006 -0.005 -0.004 -0.005 -0.003 
SAT 0.000 0.000 0.000 0.000 0.000 0.000 
SUN -0.001 -0.001 -0.001 -0.001 -0.001 -0.001 
MON-THURS 0.000 0.000 0.001 0.000 0.000 0.001 
INTERCEPT -0.034 0.007 0.007 0.002 0.033 0.029 

 

The observed bias in the results from table A1 is low across all 

specifications, implying that only marginal gains were made by the 

application of the semiparametric model in relation to the inferences drawn. 

 

 

A2. One sample Achieved Significance levels 

The following defines a significance test procedure for a single sample of 

data (i.e. one variable), which bears strong resemblance to standard 

hypotheses tests (t-tests) used for Gaussian normal variables. The test 

statistic is defined as; 

                                                 
5  This process is done using real parameter values, therefore this argument holds true so 
long as the estimated parameters take a positive sign. If however they are negative, the 
effects are exactly reversed (i.e. for a negative coefficient a positive bias would indicate 
that the OLS parameter is underestimating the true parameter effect in real terms). 
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where n is the original sample size (i.e. 201), and z* are the bootstrap 

replications of the value for z. ẑ  is the value of z that is being 

hypothesised/tested against and 2σ  is the standard deviation of the observed 

bootstrap coefficients z*. 

 

Applying the conventional null hypothesis for standard two-tailed 

significance tests the following null hypothesis is offered; 

0ˆ:0 =zH  

Thereby reducing the hypothesis test to; 
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This is the `critical' t-value for testing the assumption that the estimated 

coefficient is equal to zero. Once this has been computed, the empirical 

distribution of the coefficients must then be translated about zero (i.e. the 

mean is forced to be zero), which is the hypothesised value of the observed 

coefficient. Following this, each bootstrap replication is then tested against 

this critical value using the following decision criteria; 

 

critcalc ttH <:0  

 

thus indicating that there is no evidence that parameter of interest (i.e. the 

individual bootstrap replication) is significantly different from zero. 

 

The `translation' of the empirical distribution of z (so as to create a new `null 

distribution' with mean equal to the null hypothesis) is done using the 

following formula; 

0
~

Hiii zzzz +−=  

thereby centering the distribution first about zero (by subtracting the 

observed mean iz ), and then redistributing it about the hypothesised mean 

0Hz . These values iz~  are subsequently used in calculating the t-values for 
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hypothesis tests on the now known empirical null distribution, noting that 

the null distribution does not need to be normal, using the formula; 

n
zzt

2

*
* 0~
)(

σ
−

=  

thus t-values are created for each bootstrap replication, where )( ** ztz calc= . 

These values are then compared to the previously calculated critical value in 

order to reveal the number of bootstrap replications which violate the null 

hypothesis, i.e. When crittzt >)~( *  it is not possible to reject the null 

hypothesis that the (empirical or untranslated) distribution of z is centered 

around zero. 

 

Defining; 

crittzt >= )~(# *γ  

i.e. the number of times that the null hypothesis cannot be rejected. Then the 

achieved significance level (ASL) is found to be 

B
ASL γ

=  

where B is the number of bootstrap calculations. This is then interpreted as 

the probability that the (untranslated) empirical distribution of the bootstrap 

coefficients is centred around a zero mean, and can consequently be 

considered statistically insignificant. 

 

The key difference between this test and standard significance test used in 

mainstream econometric applications is in the assumption that the estimated 

coefficient is derived from a standard normal distribution is now flexible. 

Hypothesis testing becomes feasible irrespective of the actual distribution 

that the data follows, where this evidently includes a normal distribution. 

Therefore the bootstrap framework coupled with the ASL approach to 

interpreting the significance of the coefficients provides a theoretical 

advantage over the standard OLS t-test procedure. 
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