

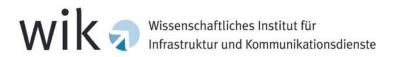
3rd International Workshop on Empirical Methods in Energy Economics (EMEE2010)

Surrey Energy Economics Centre (SEEC) University of Surrey, UK 24th – 25th June 2010

<u>NOTE:</u>

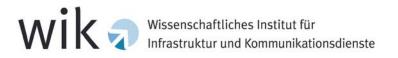
The following Presentation represents *Work in Progress* for discussion at the EMEE2010 workshop. It therefore must not be referred to without the consent of the author(s).

Sponsored by:


Price Convergence and Information Efficiency in German Natural Gas Markets

Christian Growitsch

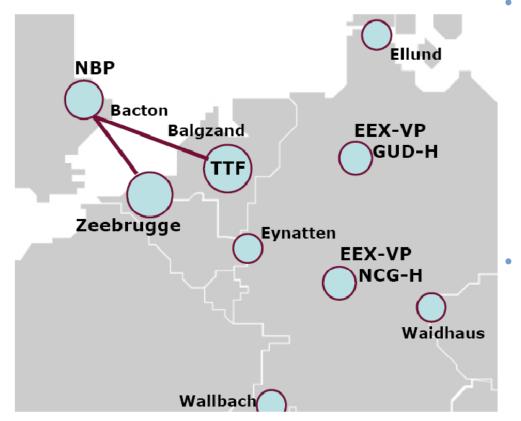
Marcus Stronzik


Rabindra Nepal

June 2010

Agenda

- 1. Motivation
- 2. Previous Literature
- 3. Methodology
- 4. Data
- 5. Empirical Results
- 6. Conclusions


- EU Regulatory Framework
 - Acceleration Directive Gas in 2003
 - Third legislative energy package entering into force 2011
 - ⇒ EU working towards a single market for natural gas
- Regulation in Germany
 - German Energy Law (Energiewirtschaftsgesetz) in 2005
 - Introduction of an Entry-Exit-System in October 2007
 - German energy regulator aims at reducing number of Entry-Exit-Zones (and trading hubs) to one single for high caloric (H-) natural gas and one for low caloric (L-) natural gas

- Development and present situation
 - Number of Entry-Exit Zones reduced from 19 (2007) to 6 (October 2009)
 - Potentially liquid high-caloric natural gas trading hubs
 - 'Net Connect Germany' (NCG)
 - Bayernets + E.ON Gastransport since October 2008
 - ENI + GRT + GVS since October 2009
 - 'Gaspool' (GPL)
 - BEB + Dong + StatoilHydro established in August 2006
 - Take-over of BEB by Gasunie in July 2008
 - Merger with ONTRAS + WINGAS in October 2009

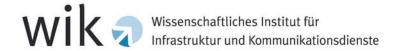
• European wholesale market by the end of 2009

Wissenschaftliches Institut für

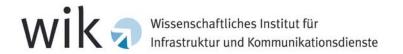
Infrastruktur und Kommunikationsdienste

wik

• TTF/ NDL


- Pipelines from GER, BEL and UK
- Trading system
- Connection to NBP via Interconnector
- Churn rate ca. 3.2
- EEX/ GER
 - Virtual trading points NCG and GPL
 - Churn rate NCG increased from 1.6 to 2.7
 - Capacity shortages

- Research question: Effect of the Entry-Exit-System on the competitiveness of the German natural gas wholesale market
- Measurement of competitiveness: Analysis of price development to identify level of market integration
 - Price convergence / market integration
 - Information efficiency
- Comparison of NCG and GPL
 - Price development within Germany
- Dutch Title Transfer Facility (TTF) hub as competitive benchmark
 - Market integration of Germany and the Netherlands
- Accounting for transmission charges



Previous Literature

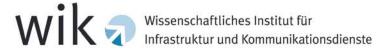
- U.S. gas market
 - Walls (1994), De Vany and Walls (1993, 1996) as well as Serletis (1997) study the effect of market opening using cointegration analysis finding increasing market integration over time
 - King and Cuc (1996) confirm these results applying a time-varying coefficient approach (Kalman Filter)
 - Cuddington and Wang (2006) find regional differences regarding market integration by means of an error correction model
- European gas markets
 - Asche et al. (2001) detect integrated markets of Belgium, France and Germany
 - Siliverstovs et al. (2005) study the development of convergence of spot prices at Zeebrugge and NBP

- Competitive Benchmark
 - On efficient markets homogenous goods should have identical prices at different locations (Law of one price)
 - Price differences should only reflect transportation and transaction costs
 - New information (innovations) are immediately absorbed by the market
- Markets are economically integrated if time series of prices at different trading points are cointegrated
- ⇒ Markets are efficient if information processing is fast

- Cointegration according to Johansen (1988, 1991)
 - Identification of a long run equilibrium
 - Identification of short run dynamics via error correction model
 - Fixed relations over time
 - Limited explanatory power for
 - Short time periods
 - Structural or institutional changes
- Time-varying coefficient model (Kalman Filter, Kalman, 1960)
 - time-varying relation of market integration / price convergence
 - Error correction model: Time-varying short run dynamics indicating information efficiency

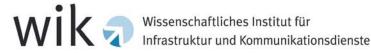
• Price relation between two market zones *i* and *j*:

$$p_{i,t}^{net} = c_{ij} + \beta_t p_{j,t}^{net} + \varepsilon_t$$

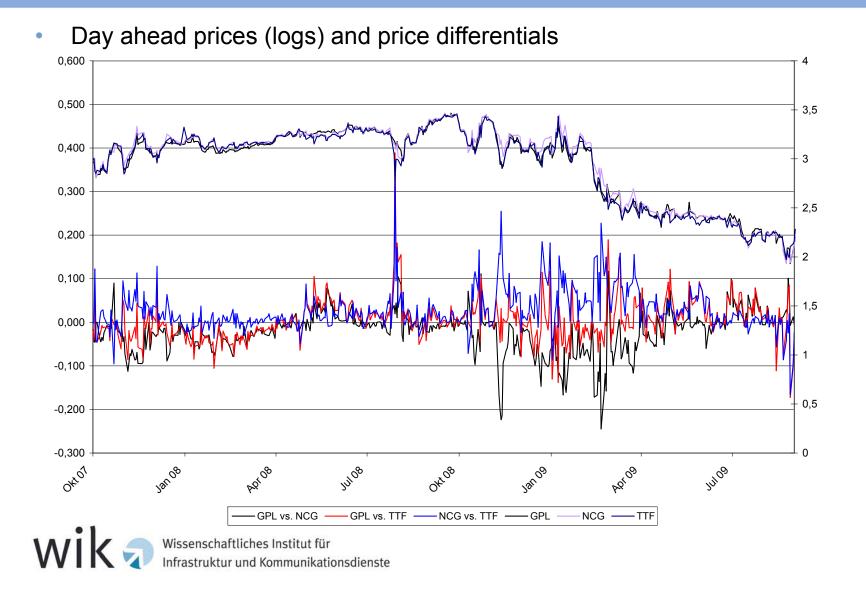

- c_{ij} : Transaction costs beyond transmission charges
- β_t : Degree of market integration
- Kalman Filter: recursive determination of β :

$$\beta_t = \beta_{t-1} + \upsilon_t$$

• Kalman Filter as error correction model:


$$\Delta p_{i,t}^{net} = c_{ij} + \alpha_t (p_{i,t-1}^{net} - p_{j,t-1}^{net}) + \varepsilon_t$$
$$\alpha_t = \alpha_{t-1} + \upsilon_t$$

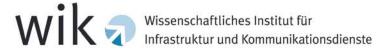
- α_t : speed of price adjustment



Data

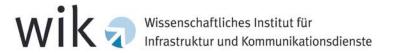
- Daily day ahead prices (logs)
 - Net Connect Germany (NCG): EEX
 - Gaspool (GPL): EEX
 - Title Transfer Facility Hub (TTF): energate
- Prices adjusted for transmission charges
- Timeframe
 - October 1st 2007 September 30th 2009
 - Starting with the introduction of the Entry-Exit System
 - No reliable price information for earlier periods

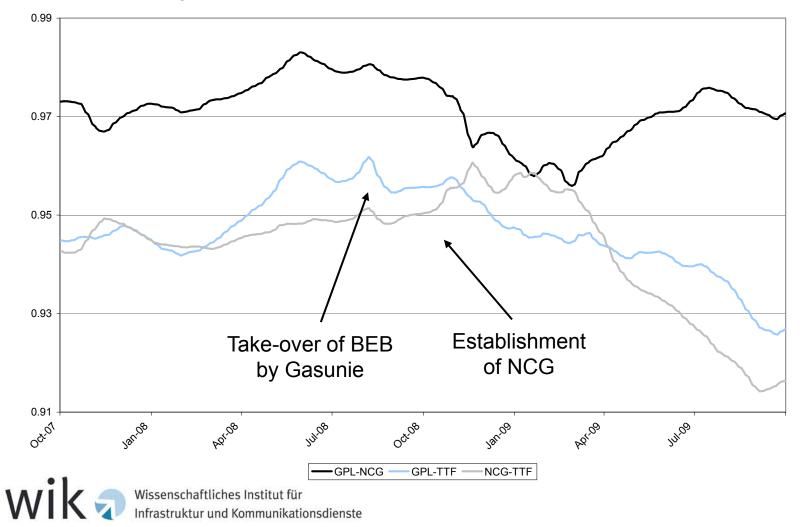
Data


Long run cointegrating equations and error correction •

D :	Cointegrating Equation				
Region				Constant	
GPL-NCG	0.983*** (0.010)	GPL	-0.155** (0.076)	-0.038 (0.028)	
		NCG	0.158** (0.073)		
GPL-TTF	0.997*** (0.007)	GPL	-0.332*** (0.064)	-0.014 (0.021)	
		TTF	0.188*** (0.064)		
NCG-TTF	1.011*** (0.010)	NCG	-0.342*** (0.076)	0.0166 (0.030)	
		TTF	0.025 (0.076)		

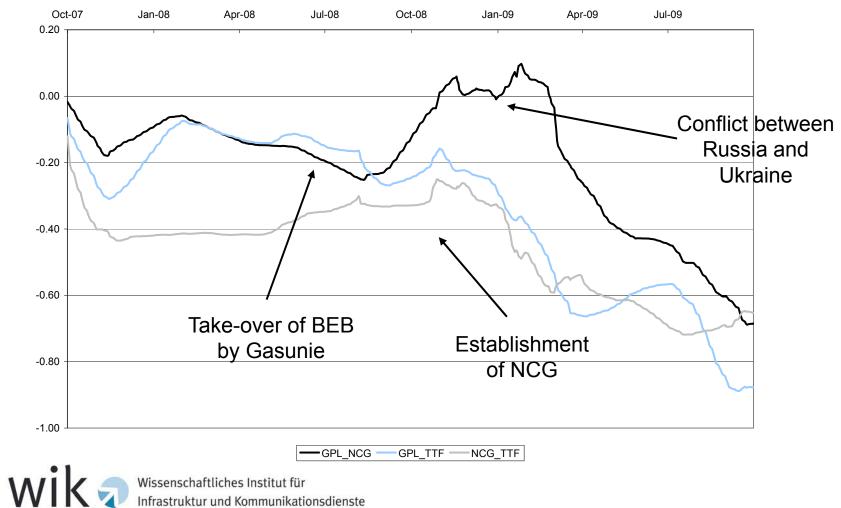
Prices are cointegrated \Rightarrow strong market integration


- Accounting for structural or institutional changes over time
 - Dynamic regulatory environment
 - Mergers of market zones
- \Rightarrow Time-varying coefficient model (Kalman Filter)
 - Development of price convergence
 - \Rightarrow Hypothesis: β increasing over time
 - Development of market efficiency (information processing)
 - \Rightarrow Hypothesis: α increasing over time (in absolute terms)

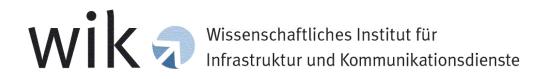

• Time-varying coefficient model (final state)

Region	Price Convergence		Information Efficiency	
	β	Constant	α	Constant
GPL-NCG	0.971***	0.068**	-0.684**	-0.002
	(0.003)	(0.027)	(0.291)	(0.003)
GPL-TTF	0.923***	0.155***	-0.878***	-0.000
	(0.003)	(0.028)	(0.244)	(0.002)
NCG-TTF	0.916***	0.178***	-0.653**	0.006**
	(0.004)	(0.026)	(0.296)	(0.003)

- Highest degree of market integration for intra-German trades
- Significant transaction costs (beyond transmission charges)
- Highest information efficiency between GPL and TTF



15


Information efficiency: Error correction (time-varying α)

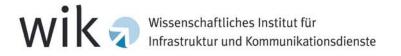
Conclusions

- Johansen approach
 - TTF as the leading market for the two German markets
 - Fails to account for changes in market environment
 - Seems to overestimate price convergence due to fixed price relations
- Time-varying coefficient model
 - Wholesale markets sufficiently integrated
 - Considerable increase in market efficiency since mandatory introduction of the Entry-Exit-System
 - Especially after establishment of NCG
 - Still significant price differentials between markets indicating capacity constraints
- Further market investigation suggested

WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH Postfach 2000 53588 Bad Honnef Deutschland Tel +49 (0) 2224-9225-88 Fax +49 (0) 2224-9225-68 eMail c.growitsch@wik.org www. wik. org

- Accounting for transmission charges
 - Law of one price holds if spatial price differential ≤ transmission charges

$$P_{j,t} - P_{i,t} \le TC_{i \to j,t}$$


- In case of asymmetric network charges

$$P_{i,t} + d_{i \to j,t} \cdot TC_{i \to j,t} = P_{j,t} + d_{j \to i,t} \cdot TC_{j \to i,t}$$

with

$$d_{i \to j,t} = 1 \quad \text{if} \ \ P_{i,t} + TC_{i \to j,t} \leq P_{j,t} \ \text{, otherwise} \quad d_{i \to j,t} = 0$$
 and

$$d_{j \to i,t} = 1$$
 if $P_{j,t} + TC_{j \to i,t} \le P_{i,t}$, otherwise $d_{j \to i,t} = 0$

- Accounting for transmission charges (cont.)
 - Adjusted spot price net off transmission charges

$$P_{i,t}^{net} = P_{i,t} + d_{i \to j,t} \cdot TC_{i \to j,t}$$

- Equilibrium condition using log prices

$$p_{i,t}^{net} = p_{j,t}^{net}$$

i,j = GPL, NCG, TTF