

3rd International Workshop on Empirical Methods in Energy Economics (EMEE2010)

Surrey Energy Economics Centre (SEEC) University of Surrey, UK 24th – 25th June 2010

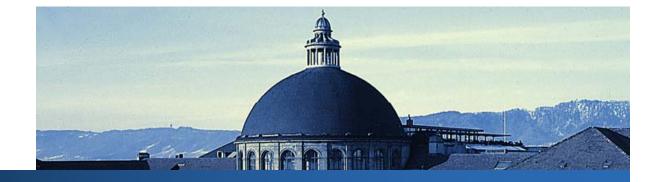
<u>NOTE:</u>

The following Presentation represents *Work in Progress* for discussion at the EMEE2010 workshop. It therefore must not be referred to without the consent of the author(s).

Sponsored by:

The Economies of Scale in The French Power Distribution Utilities

3rd International Workshop on


Empirical Methods in Energy Economics

University of Surrey, Guildford, UK, 24-25 June 2010

Mehdi Farsi, Massimo Filippini, Marie-Anne Plagnet, Roxana Saplacan

Centre for Energy Policy and Economics Swiss Federal Institutes of Technology

EIGGENÖSSISCHE TECHNISCHE HOCHSCHUle Zürich Swiss Federal Institute of Technology Zurich

Outline

Introduction

- Model Specification and Data
- Econometrics
- Estimation Results
- Conclusion

A. Introduction

- In the last two decades several countries have introduced a reform of the electricity sector
- Competition in production and new regulation instruments in the distribution (still a natural monopoly).
- For the design of these reforms as well for business decisions, the empirical understanding on different efficiency concepts (*scale efficiency, scope efficiency, and cost efficiency*) is relevant
- In France a reform has been introduced in 2003 → Important effects for EDF

Introduction

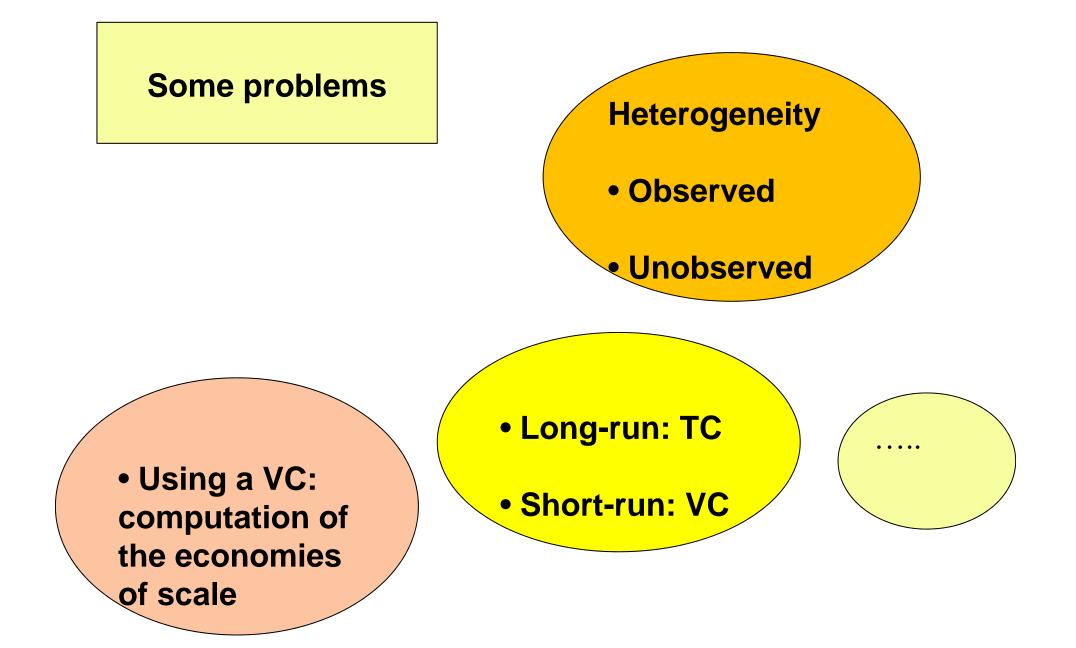
- France: EDF vertical integrated company
- EDF is in charge of 95% of total electricity distribution in France.
- Reorganization of EDF: unbundling, reorganization of the distribution....

Electricité de France

- EDF is one the world's largest utility company (>120 Giga watts generation capacity and €66 billion revenue in 2009)
- Created in 1946, by nationalizing a number of small utilities and has been a gov't corporation until privatization in 2005 (85% ownership retained by French gov't).
- Mainly led by elite engineers, EDF has undergone several reforms

Electricité de France (distribution)

- Until the 1990's power distribution was organized in 8 large regional units.
- Gradual decentralization in the 1990's resulted in 102 independent distribution centers.
- A reversal starting from 2005: re-grouping certain activities across several neighboring units up to consolidating back to regional level.


m2

Slide 6				
m1	reamining 5% is distributed by about 160 small municial utilities.			
	Today about 19 other suppliers compete with EDF. mfarsi, 11/06/2010			
m2	depending on the function:			

customer services are consolidated at regional level, but technical maintenance at 2-3 neighboring units. mfarsi, 11/06/2010

In this paper

- We estimate the economies of scale in a sample of 93 EDF distribution units from 2003 to 2005, prior to re-structuring measures.
- We account for unobserved heterogeneity and try to assess the unexploited economies of scale prior to reforms.

Outline

- Introduction
- Model Specification
- Data and Econometrics
- Estimation Results
- Conclusion

Model specification (variable cost function)

$$C = C(CU, AS, K, D_t)$$
 m8

- *C*: Total OPEX for networks and customer-service activities
- CU: Total number of low-voltage customers
- *AS*: Service area size (km²)
- *K*: Distributor's assets book value (capital stock)
- D_t : Vector of year dummies

m8 We tried several models, but found that a oparsimonious model works better in terms of plausibility and significance mfarsi, 17/06/2010

Cobb-Douglas function

$$\ln C_{it} = \alpha_i^{(CU)} \ln CU_{it} + \alpha_i^{(AS)} \ln AS_{it}$$
$$+ \alpha_i^{(K)} \ln K_{it} + \sum_{t=2004}^{2005} \delta_i^{(t)} D_t$$
$$+ \alpha_i^{(0)} + \varepsilon_{it}$$

$$\varepsilon_{it} \square N(0, \sigma_i^2)$$

Economies of scale and density

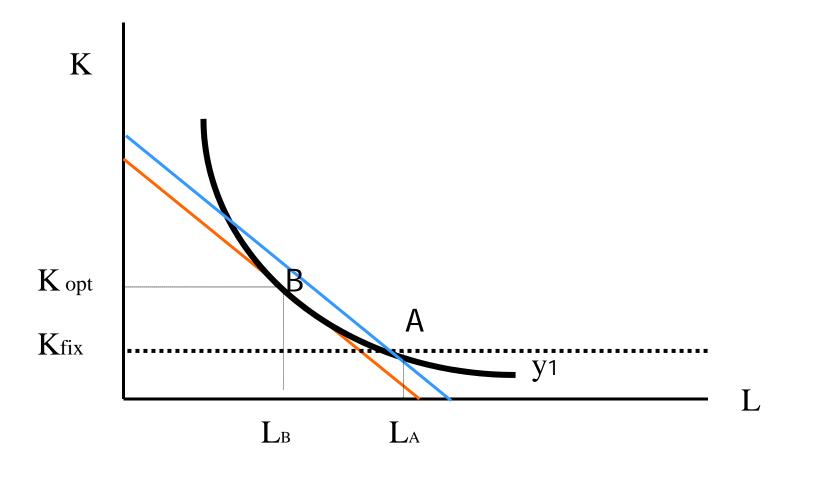
$$ES = \left(1 - \frac{\partial \ln C}{\partial \ln K}\right) \cdot \left(\frac{\partial \ln C}{\partial \ln CU} + \frac{\partial \ln C}{\partial \ln AS}\right)^{-1}$$
$$ED = \left(1 - \frac{\partial \ln C}{\partial \ln K}\right) \cdot \left(\frac{\partial \ln C}{\partial \ln CU}\right)^{-1}$$

- Sign of the coefficient for K
- Actual or optimal K?

m18

Slide 12

m18 these are long run Economies of Scale mfarsi, 17/06/2010


Properties variable cost function

- If the firm minimizes the variable costs of producing a given output, subject to quasi-fixed inputs, the variable cost function, VC(Q,p_g,k) has the following properties (regularity conditions):
 - 1. VC(Q, **pg**, **k**) > 0 for **p** > 0 and Q > 0 (non-negativity)
 - 2. if pg' > pg, then VC(Q, pg', k) VC(Q, pg, k) (non-decreasing in pg)
 - 3. concave and continuous in **pg**
 - 4. VC(Q, **pg**, **k**) is homogeneous of degree one in input prices: VC(Q, t**pg**, **k**) = t VC(Q, wg, k) for t > 0
 - 5. if Q > Q', then VC(Q, pg, k) < VC(Q', pg, k) (non-decreasing in Q)

6. if $\mathbf{k}' > \mathbf{k}$ then VC(y, **pg**, \mathbf{k}') < VC(y, **pg**, \mathbf{k}) (non-increasing in \mathbf{k})

Mehdi Farsi, CEPE, ETH Zurich

if k' > k then VC(y, pg, k') < VC(y, pg, k) (nonincreasing in k)

Outline

- Introduction
- Model Specification and Data
- Data and Econometrics
- Estimation Results
- Conclusion

Data (279 observations from 93 units, 2003-2005)

Variable		Mean	Std Dev	Min.	Max.	
С	OpEx (€million)	23.49	12.03	10.58	115.55	
CU	# of customers	338'437	186'637	109'435	1'596'126	
NT	Network Length (km) Assets (€ million)	13'320	6'143	4'060	32'743	
K		342.71	143.55	128.92	937.12	
AS	Service Area Size (km ²)	5'473.46	3'158.07	107	1'3871	
CA	Transformer Capacity (MVA)	1442	613	412	4526	
Q	Distributed electricity (GWh)	3'673	1'845	1'001	14'364	
CD	Customer density /km ²	445	1'663	17	14'917	

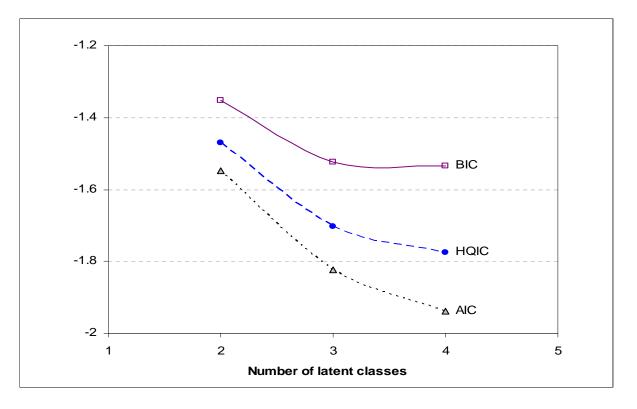
All monetary values are in terms of 2005 Euros based on French CPI.

Empirical question

 Here we use a finite number of technology classes that can be modeled with a latent class model.

$\alpha_i^{(CU)}, \alpha_i^{(AS)}, \alpha_i^{(K)}, \delta_i^{(t)}, \alpha_i^{(0)}$ and σ_i

Econometric approach


- Latent class model has been used (eg. Orea-Kumbhakar, 2004) to model technological differences.
- In latent class models, parameters are assumed to be discrete random variables in *J* classes distributed across companies.
- In the first step, the sample is split into several groups
- Splitting can be based on some a priori information about companies,
- In the second stage different functions are estimated for each group

Mehdi Farsi, CEPE, ETH Zurich

Outline

- Introduction
- Model Specification and Data
- Econometrics
- Estimation Results
- Conclusion

Specification of number of classes

With J>4, additional classes become almost

degenerate (very small prior probability).

Estimation Results (LC)

	Class 1	Class 2	Class 3	Class 4
Number of customers (CU)	1.285	0.644 **	0.674 **	0.470 **
	(0.797)	(0.039)	(0.038)	(0.066)
Service area size (AS)	0.063	0.080 **	0.084 **	0.057 **
	(0.089)	(0.008)	(0.015)	(0.026)
Assets book value (K)	-0.400	0.183 **	0.088 *	0.331 **
	(0.820)	(0.039)	(0.047)	(0.099)
Year 2004	0.048	-0.067 **	-0.027	-0.125 **
	(0.344)	(0.028)	(0.029)	(0.040)
Year 2005	0.472 **	-0.191 **	-0.115 **	-0.253 **
	(0.179)	(0.015)	(0.016)	(0.073)
Constant	5.086 **	5.775 **	6.635 **	6.532 **
	(1.516)	(0.201)	(0.209)	(0.441)
Std. dev. of the stochastic term (σ_j)	0.119 **	0.060 **	0.049 **	0.048 **
	(0.034)	(0.004)	(0.004)	(0.008)
Prior class probability (P_j)	0.086 **	0.452 **	0.348 **	0.114 **
	(0.029)	(0.058)	(0.060)	(0.038)

Standard errors are given in parentheses. * p<.1; ** p<.05

Economies of Scale and Customer Density (LC)

	Class 1	Class 2	Class 3	Class 4
Economies of Scale (<i>ES</i>)	1.039	1.129 **	1.203 **	1.270 **
	(.109)	(.029)	(.031)	(.071)
Economies of Density (ED)	1.089	1.269 **	1.353 **	1.424 **
	(.087)	(.028)	(.028)	(.083)

Significantly different from 1 at: * p<.1; ** p<.05

Standard errors (given in parentheses) are computed using delta method.

The Economies of Scale in the French Power Distribution Utilities

Identifying		Class 1	Class 2	Class 3	Class 4
latent classes	<i>CU</i> ('000)	598 (421)	317 (110)	312 (135)	306 (187)
	AS (km²)	2844 (3005)	5759 (2763)	5060 (2611)	7741 (4877)
	CD (per km ²)	2399 (5086)	186 (575)	333 (853)	338 (701)
	CA (MVA)	2021 (1067)	1419 (401)	1379 (600)	1277 (725)
	K (€million)	453 (221)	333 (116)	323 (131)	358 (151)
	<i>NT</i> (km)	10823 (6276)	13065 (5520)	12963 (6072)	17566 (7849)
	Q (GWh)	5778 (3710)	3589 (1220)	3449 (1550)	3077 (2060)
Standard deviations are given in parentheses.	Posterior P_j	1.000 (.000)	0.964 (.087)	0.926 (.100)	0.973 (.073)

Roughly speaking:

- Class 1: High customer density (CD)
- Class 2: Medium network (medium CD)
- Class 3: Medium network (low CD)
- Class 4: Large networks (medium CD)

Conclusion

- Many (natural monopoly) industries inherit their organization from the past, entailing potential scale inefficiency.
- A few examples of restructuring and policy discussions shows that optimal scale is still a relevant issue.
- Analysis of costs and the economies of scale can be used to assess the efficiency of the electricity distribution sector, provided that unobserved heterogeneity is taken into account.
- Latent-class models are sensible tools that could be used.

Thank you for your attention!