

3rd International Workshop on Empirical Methods in Energy Economics (EMEE2010)

Surrey Energy Economics Centre (SEEC) University of Surrey, UK 24th – 25th June 2010

<u>NOTE:</u>

The following Poster represents *Work in Progress* for presentation and discussion at the EMEE2010 workshop. It therefore must not be referred to without the consent of the author(s).

Sponsored by:

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Centre for Energy Policy and Economics Department of Management, Technology and Economics

US Residential Energy Demand and Energy Efficiency A Stochastic Demand Frontier Approach

Massimo Filippini^{*}, Lester C. Hunt[#]

***** Swiss Federal Institute of Technology, Centre for Energy Policy and Economics (CEPE) * Università della Svizzera Italiana, Istituto di microeconomia e economia pubblica [#]Surrey Energy Economics Centre (SEEC), Department of Economics, University of Surrey

Problems and Goals

• Energy efficiency has a critical role in addressing energy security, environmental and economic issues

An Aggregate Frontier Energy Demand Model

Ε

Efficiency Levels and Rankings

Estimated Underlying Energy Efficiency (Pooled Model)		Energy Intensity 1 (Energy per capita)		Energy Intensity 2 (Energy per building)	
Level	Rank	Level	Rank	Level	Rank
0.974	1	25.162	1	69.252	3
0.946	29	25.656	2	55.649	1
0.973	2	44.219	28	103.778	29
0.917	41	48.428	41	116.997	45
	Estimated Underlying Efficiency (Pooled Moo Level 0.974 0.946 0.946 0.973 0.973	Estimated Underlying Energy Efficiency (Pooled IM-Vel) Level Rank 0.974 1 0.974 29 0.946 29 0.973 2 0.973 41 0.917 41	Estimated Underlying Energy Efficiency (Pooled Model)Energy in 1 (Energy capita)LevelRankLevel0.974125.1620.974125.6560.9462925.6560.973244.2190.91748.428	Estimated Underlying Energy Efficiency (Pooled Model)Energy Intensity 1 (Energy per capita)LevelRankLevelRankLevelRank0.974125.16210.974125.65620.9462925.65620.973244.219280.9174148.42841	Estimated Underlying Efficiency (Pooled Model)Energy Intensity 1 (Energy Per capita)Energy Intensity (Energy per building)LevelRankLevelRankLevelLevelRankLevelRankLevel0.974125.162169.2520.974125.656255.6490.9462925.656255.6490.973244.21928103.7780.9174148.42841116.997

- All countries are implementing energy efficiency policies
- Similarly, all US states are implementing energy efficiency policies although with different approaches
- The promotion of energy efficiency policy is also a very important activity of the IEA (International Energy Agency) and of the EIA (Energy Information Agency)
- How to measure the level of energy efficiency?

Energy efficiency measures the ability of a country to minimize the energy consumption, given a level of Y

Strengths and Limitations of the Energy-Intensity Indicators

(http://www.eia.doe.gov/emeu/efficiency/ee_ch3.htm)

- ... 'Four energy-intensity indicators were presented in this chapter that may be used as the basis for the measurement of energy efficiency. All four indicators are imperfect...."
- ..."No single energy-intensity indicator for the residential sector stands out as clearly superior to the others. The

Panel Data Stochastic Frontier Models

POOLED MODELL (Aigner, Lovell and Schmidt, 1977) $\ln C_{it} = \ln C(y_{it}, w_{it}) + u_{it} + v_{it}$ $u_{it} \geq 0$

RANDOM EFFECTS MODELL (PITT & LEE, 1981) $\ln C_{it} = \ln C(y_{it}, w_{it}) + \alpha_i + v_{it}$ $\alpha_i \geq 0$

TRUE RANDOM EFFECTS MODELL (GREENE, 2005) $\ln C_{it} = \ln C(y_{it}, w_{it}) + \alpha_i + u_{it} + v_{it}$ $u_{it} \geq 0$

Average Correlation Coefficients

- **Energy Intensity I and Energy Intensity II : 0.90**
- **Energy Efficiency and Energy Intensity I (per person** consumption): -0.65
- Energy Efficiency and Energy Intensity II (per building): 0.61

- choice of indicator depends on the questions asked and on data and resource availability...."
- **Energy-Intensity Indicators for the Residential Sector**
 - Million Btu per Building Million Btu per Household \bullet
 - Thousand Btu per Square Foot
 - Million Btu per Household Member

Model Specification

 $e_{it} = \alpha + \alpha^{y} y_{it} + \alpha^{p} p_{it} + \alpha^{hs} h s_{it} + \alpha^{hd} h dd_{it} + \alpha^{cdd} c dd_{it}$ $+ \alpha^{sh}sht + \alpha^{DR1}DR1_{it} + \alpha^{DR2}DR2_{it} + \alpha^{DR3}DR3_{it}$ $\alpha^{DT}DT_t + u_{it} + v_{it}$

- *E_{it}* : residential energy consumption per capita
- *P_{it}* : the real price of residential energy
- *Y_{it}* : Income per capita
- *Hs_{it}* : Household size
- *CDD_{it}*,*HDD_{it}* : cooling and heating degree days
- *DC_{it}* : share of detached houses
- DRi : regional dummies (West, Midwest, Northeast and South)
- Dt : time dummies
- *u_{it}* : energy efficiency assumed to be half-normal distributed

Data

Balanced Panel Data Set ➤ 48 US states (i = 1, ..., 48)

Spearman Rank Correlation Coefficients

- **Energy Intensity I and Energy Intensity II : 0.93**
- Energy Efficiency and Energy Intensity I (per person consumption): 0.21
- Energy Efficiency and Energy Intensity II (per building): 0.22

Conclusions

- This research is a fresh attempt to isolate core energy efficiency for a panel of 48 US states, opposed to relying on energy intensity indicators
- By estimating a measure of 'underlying energy efficiency' by combining the approaches taken in energy demand modelling and frontier analysis
- The estimates for core energy efficiency using this approach

Goals of the Paper

- To estimate the residential level of energy efficiency for US • states using an alternative approach based on two branches of the literature:
 - Frontier estimation
 - energy demand modelling
- An aggregate residential energy demand frontier function is estimated

> 1995 to 2007 (t = 1995-2007)

- where:
 - **E** = per capita residential energy consumption in Btu (British Thermal Units)
 - Y = real per capita income (thousand US 2000)
 - \geq P = real price of energy \$ per million of BTU (2000=100)
- Data Sources

show that although for a number of states the change in energy intensity over time might give a reasonable indication of efficiency improvements; this is not always the case

- It is argued therefore that this analysis should be undertaken to avoid potentially misleading advice to policy makers
- So that looking at relative energy intensity across states might give a misleading picture, unless the influences discussed above are controlled for first

