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Abstract  
Policies that aim to reduce energy consumption in the industrial sector require knowledge of the elasticity of 
substitution (EoS) of capital-energy. In this paper, first, we extend Thomsen's (2000) methodology in the context of 
a Generalized Leontief (GL) to link short and long run in a panel data setting. This allows us to estimate short and 
long run elasticities of capital-energy. Furthermore, we disaggregate by industry, different kinds of capital and we 
control for technological change. We also propose a new method to estimate a system of input-output equations 
jointly with a dynamic equation for the capital motion by using a Generalized Method of Moments System (GMM-
SYS) in two steps for short run elasticities; while long run elasticities are estimated by the Iterated Seemingly 
Unrelated Regression (ISUR) method. Second, we estimate an Error Correction Model (ECM) using a four factor 
specification and investment in R&D for Energy Efficiency to distinguish short from long run elasticities by 
applying GMM-SYS in one step. Finally, we estimate a system of equations jointly with a Translog Cost Function 
(TCF) by applying the ISUR method to compare the EoS with those obtained by the previous two methods.   
Our results show clear evidence of complementarity when using the TCF while weak substitutability is found with 
the GL. Regarding the ECM, it is found that reductions in investment in machinery prompt bigger increases in 
energy consumption than reductions in investment in buildings. Therefore we argue that a policy of increasing 
energy prices via taxes to reduce energy consumption will seriously affect investment and it is especially harmful 
for the industries of basic metals, chemical, transport equipment and machinery, i.e., those showing stronger 
dependence between energy and capital. We recommend that a better policy is to encourage technological diffusion. 
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Introduction 
According to Saunders (2000), the design of policies that aim to reduce energy consumption in the industrial sector 
via taxes requires to know the Elasticity of Substitution (EoS) between capital and energy. If it is negative, then 
policies must encourage technological diffusion. However, if the elasticity is positive, taxes could then be used to 
reduce energy consumption. Berndt and Wood (1975) provided the first estimation of EoS between capital and 
energy and since then, the controversy about the nature of its relationship still continues. 
Berndt and Wood (1975) found that energy price shocks will prompt reduction in the investment of capital. On the 
contrary, Griffin and Gregory (1976) found that changes in energy prices will encourage investment in capital to 
reduce energy consumption. These results were found for the United States economy. The former estimation used 
aggregate data and a four factor model whereas the later one used an international panel data and three factors4. 
Berndt and Wood (1979) argued that the omission of intermediate materials in Griffin and Gregory's (1976) model 
prompt a biased estimation and therefore, they concluded substitutability. In the early literature, the discussion was 
originated by the different conclusions based on the Translog Cost Function (TCF). Later on, Apostolakis (1990) 
argued that substitutability associated with long run adjustments in capital-energy (K-E) was related to the use of 
panel data settings. On the other hand, complementarity was related to the use of time series settings. 
More recently, Frondel and Schmidt (2002) pointed out that in fact none of these arguments were important. They 
found that, under certain circumstances, the elasticities obtained by the TCF ended up being close to the ratio of 
factor costs and total cost, and therefore, the TCF cannot provide reliable estimates. 
Two alternative approaches are the Generalized Leontief Cost Function (GL) and the Error Correction Model 
(ECM). Thomsen (2000) analyzed the former specification, and he suggested a two-step procedure to estimate Cross 
Price Elasticities (CPEs ). In the first step, a function of capital prices is obtained by applying Shephard's lemma to 
a long run cost function. In the second step, the previous results are used to estimate the short run demand of factors. 
This approach is contrary to the one proposed by Morrison (1993), who obtains in the first step the short run 
demand functions based on a short run cost (SRC) function. According to Thomsen (2000), Morrison's approach is 
not only a more complicated procedure but also the SRC proposed by Morrison was found to be unrealistic. 
After thirty years of studying EoS issues, researchers have learned that substitutability is a relative concept that 
depends on the country5, industry and the kind of capital6 that is analyzed. Furthermore, Popp (1997) argues that 
using a time trend, as a regular practice in the previous estimations, cannot capture technological changes 
particularly for energy efficiency and therefore, a trend just captures the general impact of technological changes on 
energy consumption. That is why one of the main challenges to improve on Thomsen's (2000) methodology is to 
control for the previous factors by using a panel data setting where we can disaggregate by industry and by kind of 
capital and also controlling at the same time for technological change. Hence, this is the first objective that we 
address in this paper. 
Regarding the ECM, Apergis and Payne (2009) have analyzed the relationship between energy and economic 
growth by following a time series approach in a panel data context. However, to the best of our knowledge, there are 
still no estimation and testing results of short and long run elasticities of capital-energy by using an ECM in a panel 
data context where we can disaggregate by industry and different kinds of capital, and this is the second novel 
contribution of this paper. 
Along these lines, first, we extend the Thomsen's (2000) methodology to link the short and long run in a panel data 
setting. In order to do so, we also propose a new method to estimate a system of input - output equations jointly with 
a dynamic equation for the motion of capital by using a General Method of Moments System (GMM-SYS) for the 
short run elasticities; whereas long run elasticities are estimated by using the Iterated Seemingly Unrelated 
Regression (ISUR) method. Since we are dealing with a dynamic panel, the dynamics in the GMM-SYS are 
introduced following Arellano and Bond (1991). Furthermore, we control for technological change using Investment 
in Research and Development for Energy Efficiency (denoted as DEFIR & from now onwards). In order to 
compare the results with Thomsen's methodology in the panel data context, second, we also estimate an ECM  based 
on a Cobb-Douglas production function with four factors and DEFIR & to estimate the Technical Elasticity of 
Substitution (TES) proposed by Frondel (2004) . The estimation method involves applying the GMM-SYS in one 
step. Finally we estimate a TCF for three and four factors to investigate if we find evidence of the arguments in the 

                                                 
4Two of the most widely used specifications are the KLEM and KLE   models, where capital letters stand for capital ( K ), labour ( L  ), energy ( 
E ) and intermediate materials ( M ).  

5See Pindyck (1979). 
6See Field (1980) and Morrison (1993). 
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literature (see e.g. Berndt and Wood (1979), Apostolakis (1990) and Frondel and Schmidt (2002)) about the effect 
of omitted variable bias and the panel data setting in the estimates when we disaggregate by industry and by kind of 
capital, and also for comparison purposes with the previous two methods. 
The structure of this paper is as follows. Section 2 describes the three models and the methodologies that are used. 
Section 3 presents the dataset, the empirical results and evidence is shown that the industries of basic metals, 
chemical, transport equipment and machinery are the ones that show stronger dependence between energy and 
capital. Finally, Section 4 concludes. Appendix A contains theCPEs  for capital and energy, and Appendix B 
collects secondary results such as own price elasticities. 
 
The models and methodology 
In this paper two flexible forms (the TCF and the GL) and an ECM are used to estimate the relationship between 
capital and energy. Regarding the flexible forms, Diewert (1974) argued that a cost function is flexible if the level of 
cost and its first and second derivatives are homogeneous of degree one in prices. Flexible forms are considered as 
an approximation to a general cost function. They are the result of solving the classic microeconomics problem that 

firms face. That is, the cost function is given as  Cp,y, t̃ ≡ minip ′i : fi, i  0,  where p  is the vector of 

N input prices with p ≡ p1 ,p2, . . . ,pN′  0 , i  is the demand of inputs, f  is a production function and  

t~ denotes the technological level which, later in the empirical section, will be captured by the variable  

DEFIR & . Finally, y  corresponds to the output in a certain period of time. It is important to mention that the 

cost function )~,,( typC  is assumed to be homogeneous of degree 1 and concave in input prices. For simplicity in 

terms of notation, we write  CtypC )~,,(  from now onwards. 

The translog cost function (TCF ) 
The first flexible form to be analyzed is the TCF which takes the following shape 
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where subscripts  i   and  j   stand for factors  N,..,1  . Moreover, symmetry and homogeneity of degree 1 in prices 

are imposed as follows 

ij  ji,∑
i1

N

i  1,∑
i1

N

ij ∑
i1

N

iy ∑
i1

N

it̃  0.

                                                         eq(2) 

Notice that it is assumed that the function is non homothetic, that is, 0iy . This implies that the cost shares 

associated to this function will depend on the level of economic activity. Furthermore, 0~ ti implies that 

technology will affect each factor differently, and therefore non neutral technical change is assumed (see Barker 
(1995)). 
Regarding concavity, if the cost function is concave in prices then its Hessian matrix has to be negative definite. 
However checking the curvature of the Hessian matrix is equivalent to checking the curvature of the matrix of Allen 
-- Uzawa, which is a matrix of the own and cross price elasticities. The TCF will be a second order Taylor 
expansion of a concave cost function if the matrix is itself definite negative. This can be tested by obtaining non-
positive eigenvalues for the Hessian matrix. On the other hand assuming symmetry in the substitution coefficients 

(i.e. jiij   ) implies to assume Slutsky symmetry. According to Mass-Collel (1995), the Slutsky symmetry 

applies to the matrix of derivatives of the optimal demand of factors with respect to input prices, called substitution 

matrix, which is assumed to be negative semidefinite and symmetric. Regarding the system of share cost  is   of 

factor  i  , by applying Shephard's lemma to the TCF , the following system is generated 
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Monotonicity is another theoretical requirement and in order to hold, each share cost equation is  must be positive at 

each point in time. 
We now move to a panel data setting where in (eq1), we allow for H industries, and following Ma et al (2008), the 
following restrictions must hold  
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                                                    eq(4) 
where subscript Hh ,...1 stands for the H analyzed industries. As an example,

h0 denotes the intercept in 

equation (eq1) for industry h . Moreover, according to Fuss (1977), the estimation method is a two-step 
optimization procedure, one where firms choose the optimal combination of fuels and another where they choose 
their optimal combination of factors; and this process is equivalent to optimizing in only one step. If weak 

separability7 is assumed in energy, and energy is one of our factors and it is the object of interest, we define Ep  as 

an index of energy price which can be estimated by the next translog function  

lnpE ≡ 0 ∑
f1

F

f lnpf  1
2∑

f1

F

∑
g1

F

fg lnpf lnpg ∑
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F

ft̃ lnpft̃,

                                                   eq(5) 

where  Epln   is the logarithm of the energy index that is substituted out to estimate the TCF given by (eq1) in the 

second step. Subscripts f and g  stand for F fuels and t~ is technological change, that we will capture by the 

DEFIR & for the industrial sector in the empirical application. Similarly to equation (eq1), it is assumed that  

∑
f1

F
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fg ∑
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                                                                                        eq(6) 
Moreover, in the panel data setting we require that8  

0 ∑
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H

0 h ,ft̃ ∑
h1

H

ft̃h
and f ∑

h1

H

fh ,

                                                                                       eq(7) 
where subscript h  stands for each of the H industries. By applying Shephard's lemma to equation (eq5), the system 

of share cost  
htfs  can be obtained for fuel f  and industry h  at time  t   

sfht  fh ∑
g1

F

fg lnpg t  ft̃h
t̃ t,  

                                                                                                               eq(8) 

                                                 
7If a production function is weakly separable the marginal rate of technical substitution (MRTS ) between a subset, say among the fuels that are 
used, is independent of the MRTS  among factors, see Berndt and Christensen (1973).   
8 Following Pindyck (1977), the parameter 

 0h
  can be estimated by assuming that 

Epln  is equal to 1 in a base year. That is, in our case, finding 

the value of  
 0h

  that makes 1ln  E
p pe E  in the year 2000 where e   is the base of the natural logarithm. Moreover, all the factor prices related 

to  
1K ,

2K , L  and M have the same base year.  
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where  
tgp   denotes the price of fuel g  at time  t   and  tt

~
  is the technological level at time .t   Following Berndt 

(1991), one can introduce additive disturbances in the system of equations (eq8) that could be interpreted as random 

mistakes of firms in choosing their optimal quantities of inputs. Therefore we can add a term 
htfU that is assumed to 

be multivariate with mean zero and a constant covariance matrix. 

The share cost 
htfs must add to unity and therefore H equations from the system of share cost (eq8) are a linear 

combination of the other )1( NH  equations. Consequently, the covariance matrix is singular and non diagonal. 

An alternative to solve this problem is to estimate (eq8) equation by equation applying Ordinary Least Squares ( 
OLS). However, symmetry in the parameters cannot be guaranteed. To estimate the system jointly, Berndt (1991) 
suggests dropping one equation from the system (eq8). The parameters of the dropped equation can be obtained by 
using the restrictions of homogeneity. Nevertheless, it raises a natural question about which equation should be 
dropped and consequently, the result will be dependent on the chosen equation. This drawback can be avoided by 
applying Maximum Likelihood (ML) methods. Nevertheless, ML is a complicated method to implement and besides 
one has to impose normality on the disturbances. Another alternative method is Three Stage Least Squares (3SLS) 
which does not have the aforementioned disadvantages. Moreover, according to Berndt (1991), if one iterates, the 
lack of invariance due to the dropped equation can be eliminated and the result will be numerically equivalent to the 
ML estimation. Furthermore, following Fuss (1975), fuel prices in the system (eq5) are assumed to be exogenous 
and consequently 3SLS will be equivalent to the Iterated Zellner- efficient estimator ( IZEF )9. This method is also 
known as the Iterated Seemingly Unrelated Regression (ISUR) method that assumes the following stochastic 
structure for factors  f   and  g   for industry  h   at any times  t   and  r    

.for  )( ,0)( rtUUEUE fggff
hrhtht

                                                                                                        eq(9) 

Hence, once the disturbances as in (eq9) are added to the system of equations (eq8), it can be estimated by the  
ISUR  method and then an energy index can be obtained as in equation (eq5). In our estimation, there is an energy 

index for each H industry at time t . On the other hand, a similar disturbance structure as in (eq9) is added to the 

system of cost share (eq3). The system of equations (eq3) along with the TCF are estimated by IZEF method. The  

ij coefficients are then used to estimate the CPEs   for industry h  , which are computed as follows 
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Expression (eq10) uses the fact that  
hihhi

p
C

ip
C s
   and it assumes that 0ln

ln 



hj
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p

p
. We also apply the Iterated 

Seemingly Unrelated Regression10 (ISUR) method as the estimation procedure in the application section. Therefore,  

ihp jh   corresponds to the CPEs for input i  and price jp  of input j  for industry h  (i.e. 
hjh pi  ) . The same 

procedure can be applied to obtain the own price elasticities. However, in this case we will have  1ln
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The Generalized Leontief (GL ) cost function and the  SYSGMM    estimation procedure 
The second flexible form used in this paper is the GL cost function where, as in the case of the TCF, symmetry, 
monotonicity and homogeneity in prices have to hold. Thomsen (2000) estimated the GL, and he established a link 
between short and long run through a price function for the quasi -flexible factors. He also suggested a two-step 
procedure to estimate Cross Price Elasticities ( CPEs ). In the first step, a function of capital prices is obtained by 
applying Shephard's lemma to a long run cost function. In the second step, the previous results are used to estimate 
the short run demand of factors. Thomsen (2000) also estimated indices of energy efficiency based on a TCF and a 

                                                 
9Note that when obtaining the 3SLS estimates in the first step of the instrumental variable method, we may have endogenous variables that could 
be on the right hand side of the system (eq3). Nevertheless, in this case it is assumed that all variables on the right hand side are exogenous and 
therefore the second and third steps in 3SLS are the same than those followed in the IZEF method.  
10See e.g. Greene (2008).  
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time trend. 
We proceed now to enumerate the main novelties that we introduce to extend Thomsen (2000) estimation procedure. 
First, we propose a new method to estimate a system of input - output equations jointly with a dynamic equation for 
the motion of capital by using a General Method of Moments System (GMM-SYS) in two steps for the short run 
elasticities; whereas the long run elasticities are estimated by the Iterated Seemingly Unrelated Regression (ISUR) 
method. 
The GMM-SYS estimation method proceeds as follows. The second main novelty that we introduce in contrast to 

Thomsen (2000) is that in the estimation of the GL , we will include the term   t̃t̃   to control for technological 
change using  DEFIR &   (note that Thomsen (2000) simply included a time trend in an auxiliary  TCF ) 

C  y ∑
i1

N

∑
j1

N

 ijpipj0.5   t̃t̃∑
i1

N

pit̃t̃y,

                                                                                  eq(12) 

where all the variables are defined as in the TCF, ip is the price of factor  i ,  t~ is technological progress and  y   

is output. Additionally, symmetry is assumed and therefore ij ji . According to Diewert et al (1984), the 

coefficients  ij   of this expression are just enough to guaranty flexibility. In this estimation we assume that the cost 

function is linear in output. We introduce the heterogeneity, following Addison et al (2005), by the following 
restriction across  H   industries  

 t̃t̃ ∑
h1

H

 t̃t̃h
.  

                                                                                                                                                eq(13) 
As in the  TCF   estimation, applying Shepherd's lemma, one can obtain the following system of long run demand 

functions for industry  h   and factor  i   at time  t   

iht

yht
 aiht ∑

j1

N

 ijpjht /piht0.5   t̃t̃h
.

                                                                                                 eq(14) 
Following Berndt (1991), the system of input-output equations can be estimated by Ordinary Least Squares  

OLS  - equation by equation; although, symmetry in the coefficients is difficult to be guaranteed. Moreover, in 
this case, there is no need to drop any equation due to the singularity of the covariance matrix as in the TCF (as it 
happens in Berndt (1991)) and efficiency can only reached by using ML. An alternative estimation method is ISUR 
which does not impose normality in the residuals as the ML method. The system of equations (eq14) can stacked 
and represented as 

Yiht  Xiht  Dht  iht ,                                                                                                        eq(15) 

Where 


 ),...,,.(
111 HThtht Nii aaaY is a vector of dimension HNT  1,

hti
X is a matrix of dimension  

HNT    ),1(2/1 NN  where T stands for time. The following matrix is arranged to guarantee symmetry as 

follows 
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   and    are the vectors that contain the coefficients  

htt ~~  and  ,ij   where     is of dimension  H   1 and   

is    )1(2/1 NN  1. The matrix htD contains the variable  t̃ ht   (i.e. the  DEFIR &   variable per industry) 

and its dimension is  HNT   H . The stochastic term, iht , has the same characterization as in (eq9) with 

dimension  HNT   1 . 

Regarding the  CPEs  , they can be obtained by using the following expression 
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whereas the own price elasticities can be computed as11 
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Following Thomsen (2000), the link between the long run and the short run is given by the demand function of 

                                                 
11We set  
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capital obtained in the previous section. The intuition of this link is that the price of the demand function of the long 

run value of capital, K  can artificially be changed until it reaches its short run level. For instance if factor 2  is 
quasi-fixed (i.e. in the short run, firms cannot choose optimally the amount of capital to be used in the productive 
process), the link between long and short run through factor 2  for industry  h   is then established as the following 
equation shows 

p̃2 ht 
12p1 ht

0.5  23p3 ht
0.5  24p4 ht

0.5 . . . .2NpNht0.5

2 ht
yht
− 22   t̃t̃h



2

.

                                eq(18) 
Notice that this function is estimated by using the coefficients obtained in (eq15). Once expression (eq18) is 
introduced in the flexible input-output equations (i.e. the ones for the N  inputs), the short run demand function can 
be estimated. However, there is still one very important issue that we did not mention yet, and it is that in the case of 
energy, its adjustment in the short run depends on the investment in capital which will be adjusted  fully only in the 
long run. Therefore this stickiness implies a dynamic adjustment cost. Furthermore, changes in the capital stock 
implies also adjustment costs. According to Nickell (1985), firms will try to minimize the distance between the long 
run target and its variation in the short run at certain period of time t . This fact can be summarized by the next 
optimization problem 

min
K

k̄ hts

Q ∑
s0



s1K k̄hts
− K

k̄ hts

∗
2  K k̄hts

− K k̄hts−1
2

− 22K k̄ hts
− K k̄hts−1

K
k̄ hts

∗ − K
k̄ hts−1

∗ ,
                                                        eq(19) 

where     is a discount factor  0    1   and  1 ,2  0 .  

K k̄ht
 K1 11 , . . ,Kkht

, . . ,KkHT

′

and  K
k̄ht

∗  K1 11

∗ , . . . ,K
kht

∗ , . . . ,K
kHT

∗ 
′

 denote the short and long run 

values of the  k  different types of capital that we may include as factors. We allow for introducing  k  different 

kinds of capital and for example 
htk

K denotes the  thk   type of capital for industry h  at time  t  . Hence  

K k̄hts and K
k̄hts

∗
are the value of vectors at time  st   . Nickell (1985) shows that when firms minimize the 

previous quadratic loss function Q , the first order condition is a difference equation and it can be written as an error 

correction equation12 

ΔK k̄ht
 ΔK

k̄ht

∗  K
k̄ht−1

∗ − K k̄ht−1
,

                                                                                                     eq(20) 

where    1 − 11 − 2 ,   1 − 1 and 1 is assumed to be the stable root of the difference equation 
,  is the speed of adjustment coefficient and   denotes the first difference operator. In this setting, the motion of 

capital is estimated by dividing equation (eq20) by the output per industry. Thomsen (2000) estimated the system of 
short run  input-output equations along with the equation of the capital motion by using non linear- ML . However, 
as he pointed out, due to the inclusion of the lagged dependent variable in equation (eq20), the residuals of the 
jointly estimation can be autocorrelated. Since in our case (and contrary to Thomsen (2000)) we deal with a panel 
data setting, the application of ML to deal with the dynamics of the model is very complicated. A natural alternative 
is to use the method proposed by Arellano and Bond (1991) and Blundell and Bond (1998), for dynamic panel data. 
Therefore, since we are dealing with a dynamic panel, we introduce the dynamics in the GMM-SYS as in Arellano 
and Bond (1991). However, this method was developed originally for micro panels while since our setting in our 
application is a macro panel, therefore it is easy for the number of instruments to overtake the number of groups  
prompting singularity in the matrix of covariances. In this paper, the following method is proposed to estimate the 
system of input-output equations and the motion of capital jointly by using the previous method with the next 
specifications that allows to treat autocorrelation in the residuals prompted by the inclusion of a lagged dependent 

                                                 
12Note that equation (eq20) follows Thomsen's (2000) specification, where the stochastic process that generates K k̄ ht

∗

follows a random walk 
without drift.  
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variable K k̄ht−1
.  The proposed procedure to estimate the short run elasticities by using the GMM-SYS is as follows. 

Let us define the following vectors 

.),...,,...,,..,0,0,0(
ˆ

,),...,,...,,...,0,0,0(
ˆ

,),...,,..,,,..,,..,(
~

)1()1(110)1(
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11

11

1

11

1

1

11

1

1

11

1
1
















HT

k

htht

k

HT

k

htht

k

HT

k

ht
Nii

y

K

y

K

y

K

y

K

y

K

y

K

y

K

y

K

y

K

y

K

y

K
aaaS

THtth

HThtht

HTht

HThtht

 

 S̃iht  is a modified version of 
htiY  in equation (eq15) to include the motion equation of capital embedded in 

equation (eq20), and therefore its dimension is NT( )HTk 1 , where ( )HTk 1  is the dimension of the 

vector 
ΔK k̄ ht

yht . Furthermore, vectors 
K k̄ ht
∗

yht , 

K k̄ ht−1
yht and 

ΔK k̄ ht
∗

yht  are the elements of equation (eq20) and consequently 
they are not relevant for the system of input-output equations.13 This is the reason of the existence of zeros at the 

beginning of those vectors
ht

htk

y

K ˆ

and
ht

htk

y

K
1

ˆ
 . To estimate the short run input-ouput equations, the new short run 

equation can be written as 

S̃iht  h
K̂

k̄ht

∗

yht
−

K̂k̄ht−1
yht

  F̃iht  ̃ iht
,

                                                                                                eq(21) 

where 







h

htk

htht y

K

htii DXF ,,
~~

 and .),~,~( ~~


 
htt Notice that

htiX
~

is used to stress that the equations 

referring to the flexible factors in equation (eq15) have been modified by substituting out the shadow prices 

equation as in (eq18) into them. Consequently, ,~
htt ~~

~ are the short run version of the coefficients defined in 

equation (eq15). Notice also the subscript  h   in the speed adjustment parameter  h   implies a heterogeneous error 

correction term14. Furthermore, it is assumed that  E̃iht  0,E̃iht ̃ihr   i   for  rt    , and  0   otherwise. 

Notice that since 

Siht  contains the first difference of the vectors  ,

h

htk

y

K
  and also their lag appears on the right hand 

side of expression (eq21), therefore the residuals of this expression  i.e. ̃iht   are autocorrelated15. Therefore the 
GMM-SYS estimator that is used in the estimation is defined as 

  G̃iht

′
ZihtZiht

′
G̃iht−1G̃ iht

′ ZihtZiht

′ S̃iht ,                                                                                               eq(22)  

where    h , ̃, ̃ t̃t̃h ,
′
,





  )
~

),ˆˆ(/1(
~

1 hthththt ikkhti FKKyG  and Ziht is the matrix of instruments that 

contains both the instruments for the model in levels and in first differences as proposed by Arellano and Bond 
(1991) and Blundell and Bond (1998).   is a weighting moments matrix that can determine the value of the 
parameter   and it will weight moments in a inverse proportion to the variances. In special,   is given as  

  varZiht ̃ iht
−1 .

 

                                                 
13Where  

h

htk

y

K 
  is estimated by applying first differences to the vector  



htk
K   and dividing it by  yh  .                    

14During the estimation in the application section, the parameter     of equation (eq20) was allowed also to vary across industries, however, the 
estimates that were obtained for them were not statistically significant. 
15See Nickell (1981). 
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GMM-SYS is a two stage procedure where in the first step the value of   is estimated, by assuming that   in 
expression (eq22) is the identity matrix. In the second step, expression (eq22) is estimated again by using the 
estimated value of    that was obtained when making use of the estimated parameters obtained in the first step. 
However, as noticed by Roodman (2006), in a finite sample a large number of instruments can prompt the matrix  
   to be singular and consequently its generalized inverse has to be used. 
Regarding the diagnostic tests, in the empirical application in Section 3, we will also make use of two tests: the 
Sargan and Hansen ( HS  ) test of over identifying restrictions, as in Hansen (1982) and Sargan (1958); and the 

Arellano-Bond ( BA  ) test (1991) for autocorrelation. The HS  statistic tests under the null, if the inner product 

of the instruments 
htiZ and the residuals  ̃ iht   is orthogonal. To carry out this test, the moment weighting matrix 

must be estimated and if the matrix is singular due to the use of many instruments the test can have very low power 
as pointed out by Roodman (2006). 

On the other hand, the autocorrelation test of  BA   evaluates under the null hypothesis the assumption that the 

inner product  
1
N
∑ ̃ iht

−l ̃ iht   is zero, where  l   stands for the  thl   -lag that is tested .   
Regarding the estimation of the elasticities, the expression used for the long run in (eq16) and (eq17) can be used for 

estimating also the  CPEs   for the short run. 
The Error Correction Model ( ECM ) 
The last specification to be described, and that it will be used in Section 3, is the ECM. The estimation is carried out 
by applying the GMM-SYS. To estimate this specification instead of using a cost context, the model is based on the 
production side and therefore some modifications are needed. First, the concept of elasticity is based on the 
Technical elasticity of substitution (TES) for factors i  and j  proposed by Frondel (2004), and it is given for 

industry h  by 

.
ln

ln

h

h

h

h

h

h
ji j

i

i

j

j

i
TES

hh 






                                                                                                                             eq(23) 

Where 0
hh jiTES . A decrease in the amount input j for industry h , implies an increment of input i  equal to 

the amount 
hh jiTES to keep the same level of production. Following Frondel (2004), unlike the TCF and the GL, the 

TES does not imply any optimality assumptions and it captures a substitution process that is determined entirely by 
the technology that firms used in the production process. Moreover, in contrast with the CPE which measures a 
relationship between relative changes in quantities and prices, the TES is a measure of relative changes purely in 
quantities. Second, following Arpegis and Payne (2009), we also assume a Cobb-Douglas production function 

y  11 22   NN

t  t̃ .  

                                                                                                                            eq(24) 

where N,..,1  are the number of factors and  

t   denotes technological level as before. Furthermore   is the general 

level of technology which is assumed constant and i   measures the changes in output due to changes in factor i . 

However, contrary to Arpegis and Payne (2009) who used a time trend for technological change, here we use the  
DEFIR & in our empirical application. Moreover, by applying logarithms in both sides of expression (eq24) and 

re-arranging for having the level of energy as dependent variable, we can analyze changes in this variable due to 
changes in the investment in capital. Finally, taking the procedure to a panel data context for industry h  at time ,t  

the following expression is obtained 

lnEht  Ah  ̃1 h ln1 ht  ̃2 h ln2 ht . . .̃N−1h lnN − 1ht  ̃t h
ln

t ht  h lnyht,                              

eq(25) 

where h  1
Eh

, ̃1 h 
1h
Eh

, ̃2 h 
2h
Eh

, . . . , ̃N−1h 
N−1h
Eh

, ̃t h


t h
Eh

, lnh  Ah . Assuming that the 
factors N,..,2,1  are cointegrated, according to the Granger Representation Theorem, expression (eq25) can be 

reparameterized in an ECM form. Following Pesaran, Shin and Smith (1999), the autoregressive distributed lag 
model, ARDL(1,1), is specified as  
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,lnln )1()1(21 hthththhtht AEVVE                                                                                         eq(26)                            

  here  


 )ln,~ln,)1ln(,..,3ln,2ln,1(ln hththththt ytNV
htht

  and  1  ̃1 h , . . . , ̃N−1h , ̃t h
,h

′
.   

Moreover, expression (eq26) can be reparameterized into an ECM framework as follows16 

Δ lnEht  1ΔVht  Vht−1   − 1 lnEht−1  Ah  ht.                                                         eq(27) 

where   .21  Following Pesaran, Shin and Smith (1999), in the long run the industries can be subjects to 

common forces such as solvency constrain or common technology and therefore the parameters     and     can be 

assumed to be homogeneous across industries. Moreover, this assumption will reduce the number of parameters in 
the estimation, increasing efficiency and therefore the assumption of homogeneity implies that  

  1 ,2 , . . ,N−1,t ,
′

. Notice that the inclusion of the lag of the logarithm of energy )(ln )1( thE   in 

this equation will prompt problems of autocorrelation. For this reason, the GMM-SYS procedure, as described in the 
previous Section, has to be applied. Following Yasar (2006), short and long run elasticities can be estimated in only 
one step17. 

Short run elasticities are the coefficients contained in 1   from equation (eq27), while the long run counterparts are 

obtained by assuming htEln .0 htV  Therefore the Long Run (LR) total elasticity of substitution for energy 

and factor j  are defined as  

.
1



 jLR

EjTES                                                                                                                                                 eq(28) 

Following Enders (2004), the Granger Representation Theorem argues that assuming that the time series are 
integrated of the same order, one can estimate an ECM. Therefore, a unit root test has to be applied to all the series 
to test how many times the series need to be differentiated until they are stationary. The unit root test for panel data 
that will be used in the next Section follows a simple regression given as 

Δiht   − 1Δiht−1  ∑
Lag1

p̆h

̃hLagΔiht−Lag  ̃ iht ,

 

where it is assumed that ̃ iht  are i.i.d. and  E̃ iht  0, E̃ iht

2    i
2  ,  ||   1 if  iht   is stationary with  

p̆h   being the maximum lags for factor i . The only issue is either to assume that the autorregressive term   is 

common or different across industries (i.e., if we allow an autoregressive term h  for each industry h ). Therefore, 

under the null hypothesis whereas under the alternative we have two options: either   ....h H   and  

;0   or  .0,...,01  H  The tests proposed by Levin, Lin, and Chu (2002, LLC)18 and Breitung (2000) 

belong to the tests that follow the first option. Both tests use proxy variables to remove the possible existence of 
autocorrelation. However, the former assumes that the time dimension is larger than the cross section one and it 
requires, unlike the Breitung's test, to estimate the average standard deviation by using Kernel choices. The LLC is 
recommended for small samples19. An example of a test that follows the second option is the test proposed by Im, 
Pesaran and Shin (2003, IPS)20, that it is based on computing the average of individual Augmented Dickey-Fuller 
(ADF) (1979) tests. 
On the other hand the test proposed by Maddala and Wu (1999) is based on a Fisher-type test and it belongs also to 
                                                 
16This expression is obtained by adding and subtracting the term 

11  itV on the right hand side of equation (eq26), and by subtracting ln 

1htE from both sides.  
17Notice that more traditional methods are more complicated than the SYSGMM   procedure that is proposed here in this paper, given that the 
estimation is usually carried out in two steps. In the first one, a long run relationship is estimated by using Full Modified OLS or Dynamic OLS. 
In the second step, the residuals from the previous step are used to estimate the short run specification.  
18Denoted as LLC  from now onwards.  
19Cross-section dimension between 10 and 250 and time dimension between 25 and 250, according to Baltagi (2005). 
20Denoted as IPS from now onwards. 
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the second group. The test is estimated by the following expression 

q  −2∑
h1

H

logqh → 2H
2 ,

 

where  qh   denotes the  p −  value obtained for the h  industry for the individual unit root tests. In the our case, in 
Section 3, the two tests are based on the ADF and the Philips-Perron (PP) (1988) test. The PP test allows us to 
estimate the regression 

iht    ̃iht−1  uiht ,  
 where     and  ~   are the intercept and the autocorrelation coefficients respectively. We can use OLS even when  

htiu  is correlated. However, a nuisance parameter is introduced in the statistic to allow for autocorrelation. 

Regarding the cointegration test that we will use in our empirical application, Pedroni (2004) suggests a residual-
based test. The null of no cointegration is evaluated based on a long run specification that allows for individual 
heterogeneity. Pedroni (2004)'s test is a two step procedure. In the first step a long run regression is estimated as 

ũht  lnEht − h − h t − 1h ln1ht  2h ln2ht . . . .N−1h lnN − 1ht  
t h ln


t ht 


̃ht,  

where energy consumption htE and the panel of factors  i.e  .  ln1ht, . . . . , ln

t ht   are assumed to be cointegrated 

of order 1. Moreover,  h   and  h  , (i.e. the fixed effect and time trend), are allowed to be heterogenous across 

individuals). In the second step, once we have obtained the estimated residuals from ũht   (i.e.  


̃ht,  the regression 

is estimated. 

̃ht  ̃ht


̃ht−1  eht   

Pedroni (2004) offers two alternatives to test the null of no cointegration against the alternative that there is 

cointegration for some of the individuals. Under the null, it is assumed that either ht~ is different or equal across 

individuals. If the former is assumed, the group of statistics are called the within dimension statistics, whereas the 
later is called the between dimension statistics. 
For the within dimension statistics, four statistics are proposed by Pedroni (2004), the panel variance ratio, the 
panel-rho, the panel- t  and the panel ADF. These are obtained by adding the numerator separately from the original 
test proposed for time series by Phillips and Ouliaris (1990) and Dickey-Fuller (1979). On the other hand, the 
between dimension statistics are basically the group mean of the original tests proposed by Phillips and Ouliaris 
(1990) applied individually to each element of the cross section. 
 
 
Empirical results 
The dataset 
The empirical analysis is based from both the cost and production sides, and therefore the data set that we use 
contains information of four fuel inputs (i.e. 4F )21 and their corresponding prices. Additionally, we considered 
the eight industries with the highest energy consumption22(i.e. 8H ) of the United Kingdom (UK) economy from 

1970 to 2006, i.e., during thirty seven years ( 37T ) which corresponds to the most updated dataset that was 

available when the analysis was carried out. Finally, we use five factors and DEFIR & (i.e. 6N ). The factors 

are constructed as net capital stock divided into buildings ( 1K ), machinery and equipment ( 2K ), labour ( L ) and 

                                                 
21The most important industrial fuels used are: natural gas (G), electricity (El), coal (C) and oil (O), IEA (2009). 
22According to the IEA (2009), the following 8 industries are the ones that show the biggest energy consumption in the manufacture sector over 
the time period that is analyzed: Industry 1: basic metals, industry 2: chemical and petrochemical, industry 3: non-metallic minerals, industry 4: 
transport equipment, industry 5: machinery, industry 6: textiles, industry 7: food and industry 8: paper. 
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intermediate materials ( M ) together with energy ( E ) and  DEFIR &  23. Therefore, we use two types of capital 

and  .2k  The dataset used was obtained from the Economic and Social data Service and the National Statistics 
for the UK24. 
On the other hand, regarding the factor prices, an index of energy is built as expression (eq5) shows. The price of 
capital is built using the implicit price of the net capital stock per industry. In the case of labour, its price is 
estimated by dividing labour compensation and the number of employees per industry. Finally, the price of M  is 
an index of producer prices for intermediate materials25. 
Estimation and testing results 
In this section, we report the results obtained from the TCF, the GL and the ECM 26. 
The translog cost function ( TCF  ) 
The estimation of the TCF is based on the Fuss' methodology (1977) by using the ISUR estimation approach; and 
therefore, it is a two step estimation procedure. The results from the first step are shown in Table 1. The intuition is 
that, at this stage, firms choose the optimal combination of different energy sources and that the empirical utility is 
used to estimate an energy index to aggregate the four fuel prices per industry27. In the second step, according to 
Fuss (1977), firms will presumably choose the optimal amount of factors that minimizes their cost function, subject 
to the restrictions that the production technology imposes on the ability to substitute one factor by another. The 
coefficients related to this stage are displayed in Table 2. Notice that the coefficients that relate energy and capital 
are highly significant, although they cannot say anything about the magnitude of the relationship between capital 
and energy by themselves. In order to obtain the ,CPEs  they have to be estimated by expression (eq10). 

The CPEs for 1K , 2K and E are reported in Table 3. They are highly statistically significant and all negative across 

the eight industries that are analyzed. Therefore the TCF model clearly provides evidence of complementarity. This 
implies that changes in the energy prices will prompt a reduction in the amount of investment, given that energy and 

capital move together. Furthermore, the CPEs  for machinery (i.e. 2K ) are bigger than for buildings (i.e. 1K ), 

which shows that firms find less flexibility by using better technology embedded in more efficient machinery to 
reduce energy consumption than increasing investment in buildings. Consequently, an increase in energy prices will 

be more harmful for industries 1,4-6 and 8 given that the CPEs  for 2K show the biggest absolute value28. Koetse, 

de Groot and Florax (2008, Figure 1) show a range of different point estimates for estimated CPE in different 
studies in the literature. Our point estimates for the CPE for the different industries tend to be in absolute value 
larger than the ones reported there. However, notice that the estimations considered in Koetse, de Groot and Florax 
(2008, Figure 1) do not considered the effect of capital desegregation. In this estimation breaking down capital into 
different kinds prompt larger estimates like in the Field (1980)’s estimation. 
Berndt and Wood (1979) argued that dropping M from the model could lead to bias the results towards 
substitutability. Furthermore, Apostolakis (1990) found that estimation based on panel data settings tends to 
conclude also substitutability. In our estimation results, as Table 4 shows, although the estimated CPEs are not 
significant, when M was dropped from the estimation and the KLE model was estimated, the conclusion of 
complementarity did not change. We argue that the robustness of our results is due to the disaggregation of capital 

into buildings ( 1K ) and machinery ( 2K ). This does not allow the data structure to predetermine the value of the 

,CPEs as pointed out by Frondel and Schmidt (2002), and consequently in this case, like in the case of Field 

(1980), the distinction of different kinds of capital can improve the estimation when the TCF is used. Additionally 
even though it also used a panel data setting, the CPEs  clearly show that for both kinds of capital and across 
industries, we find a complementary relationship. Therefore, we argue that by disaggregating by industry and by 
kind of capitals, it allows us to obtain robust results in contrast to an omitted variable bias, and this offers a solution 
to the previous arguments given by Berndt and Wood (1979), Apostolakis (1990) and Frondel and Schmidt (2002). 

                                                 
23 DEFIR &  is only available at aggregated level, and therefore, it is not possible to distinguish by industry. However, we have merged this 
database with the general investment in DR &  in the industrial sector per industry in order to be able to differentiate the structure of investment 

in DR &  per industry.  
24See http://www.esds.ac.uk and http://www.statistics.gov.uk/statbase/Product.asp?vlnk=10730.  
25There is not an available index for intermediate materials per industry in the UK, and therefore, the same index was used across industries.  
26All the programming and routines have been written and coded in STATA: www.stata.com.  
27Notice that the same prices for energy will be used in both the TCF and the GL  . In the second step, the  TCF  is estimated by equation (eq1).   
28I.e. basic metals, transport equipment, machinery, textiles and paper.  
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Finally, Table B1 shows the estimated results of the own price-elasticities based on the TCF  . 
 
The Generalized Leontief ( GL  ) cost function 
The second model to be estimated is the one based on the methodology proposed by Thomsen (2000) that 
distinguishes short and long run. The estimation procedure involves applying the GMM-SYS procedure described in 
the previous section in two steps. In the first step the long run demand functions are estimated and in the second 
step, a function for the capital price that is obtained from the previous step is substituted out into the short demand 
functions. This estimation is carried out by estimating the short run input-output system along with the dynamic 
motion equation for capital as expression (eq21) shows. For the long run, Table 5 presents the results of the 
estimated coefficients of the long run system of equations specified as in (eq15). From Table 5, we can see that the 
estimated parameters related to capital and energy are highly significant. Notice also that the estimated coefficients 
related to technological change for industries 1, 2, 4 and 829 are highly statistically significant and positive. 
Therefore it shows that there is a rebound effect. This effect has been analyzed by Saunders (2000), where 
improvements in energy efficiency make energy cheaper and consequently, energy consumption increases. The 
estimated CPEs for the long run regression are displayed in Table 6. It can be seen that the CPEs  are highly 
significant and positive across the eight analyzed industries. As a result, the GL in the long run classified both kinds 
of capital across industries as substitutes. However, the estimated elasticities are quite small in magnitude, and this 
fact implies that there is a very narrow space for firms to substitute capital for energy. Therefore, we interpret this 
result arguing that the GL finds very weak evidence of substitutability between them. 
Regarding the short run, the estimated coefficients of the short run input-output system along with the equation of 
capital motion estimated by the GMM-SYS can be found in Table 7. Contrary to the long run estimation, it is not 
found considerable statistical significance in the estimated coefficients related to the interaction capital-energy. 

Nevertheless, the capital-motion coefficient     is statistically significant and the speed adjustment parameters  h   
are also significant for four industries30. A natural concern is the fact that the inclusion of a lagged dependent 
variable for the capital motion can prompt biased estimates. However, as it is shown at the bottom of Table 7, the 
battery of tests for autocorrelation of order one and two that we performed by the ( BA  ) test, do not reject the 
null of lack of autocorrelation. 
The estimated elasticities obtained from the previous estimates are displayed in Table 8. Notice that, the CPEs  for 

1K are positive and statistically significant at %10 level, whereas the ones related to 2K were found to be not 

statistically significant across the industries analyzed. The fact that there is this lack of statistical significance is not 
surprising, since in the long run the CPEs  of capital and energy are weak substitutes and consequently, in the short 
run the lack of flexibility is even narrower, which is captured by the estimation results. Finally, Tables B2 and B3 
show the estimated results of the long and short run own price-elasticities based on the GL. 
 
The Error Correction Model ( ECM  ) 
The final specification presented in this section is the ECM. According to the Granger Representation Theorem (see 
Enders (2004)), it is required the time series to be integrated of the same order to express their long run relationship 
as an ECM. We apply first tests for unit root to the series in levels and in first differences, to verify that they are 
integrated of the same order. The first two columns of Table 9 show the results for the null of a common unit root 
process. Notice that the LLC (2002) test classifies 3 out of 7 of the series as non-stationary, whereas the Breitung 
(2000) test classifies 6 of the series as non-stationary. Furthermore, when the null hypothesis of an individual unit 
root was tested by the IPS, ADF and PP, it was found, as Table 10 shows, that the former test pointed out 

stationarity for almost all the series whereas the latter ones found generally non-stationarity .   Nevertheless, when 
the first difference was applied to the series, in general they were found to be stationary under both common and 
individual hypothesis31; and therefore this result provides evidence that the series are integrated of the same order. 
The next step is to apply the Pedroni's (2004) test for cointegration and the results are displayed in Table 11. Among 
all tests provided by Pedroni (2004), those based on Phillips-Perron (PP) (1988) are more reliable in our context 
were serial autocorrelation is an important issue, since they allow for more general types of neglected 
autocorrelation32. The null of no cointegration is rejected by the non parametric PP test and the panel v  for the 

                                                 
29I.e., basic metals, transport equipment and paper. 
30See equations (eq20) and (eq21). 
31See the last two columns of Table 9 and the second part of Table 10. 
32See Enders (2004). 
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within dimension, see Table 11. However, the rest of the tests do not reject the null hypothesis of no cointegration. 
Therefore Pedroni (2004) tests provide mix-evidence of the existence of cointegration although the test based on PP 
clearly supports the existence of cointegration. In order to provide even more solid evidence whether cointegration 
exists or not, we check if the residuals of the EMC in our own specification are stationary. 
The ECM is estimated by using expression (eq27), and the results are displayed in Table 12. As it can be seen at the 
bottom of Table 12, the Arellano and Bond test for autocorrelation of first and second order cannot reject the null of 
no-autocorrelation. Moreover, according to Roodman (2006), when a one step GMM procedure is used as in this 
case (note that as described in the previous Section, we use the GMM-SYS procedure), the Sargan (1983) test is 
inconsistent and the Hansen (1982) test is more reliable. As it can be seen in Table 12, the Hansen (1982) test does 
not reject the null that the instruments are valid. However, the test can have a very low power due to large number 
of instruments that are employed. Therefore, the residuals obtained from the ECM were also tested for unit root test. 
Table 13 confirms that there is a long run relationship as the residuals are found to be stationary. 
Regarding the estimated Technical Elasticities of Substitution )(TES , the short run ones can be obtained directly 

from the estimated coefficients displayed in Table 14. One can see that the value of the estimates TES for machinery 

( 2K ) are bigger than for buildings ( 1K ), showing that a decrease of 1% in the amount of 2K , implies an increase 

of more than 1% of energy consumption to keep the same level of production. Therefore, like in the TCF, the model 
shows that firms face limitations to substitute capital for energy when capital is embedded in machinery.  
Nevertheless, notice that some TES have wrong sign which can suggest that this model could not be suitable for the 
data set used in this estimation.  
 
Summary of the three different specifications 
As a conclusion from the different specifications, we find clear evidence of complementarity when using the TCF, 
while when using the GL, the results support weak substitutability between capital and energy. Moreover, it was 
found that the TCF and the ECM show that firms face more limitations to substitute capital for energy when capital 
is embedded in machinery than in buildings. Furthermore the estimated elasticities show that industries 1, 2, 4 and 5 
are the most vulnerable ones to a change in energy prices via taxes33.  
Therefore we find evidence that a policy that aims to diminish energy consumption via changes in energy prices will 
have a more severe contraction in capital demand for those four industries. 
Conclusions 
Thirty years ago, the estimation of CPEs  for capital and energy began a controversy with the work of Berndt and 
Wood (1975) about its relationship that is still currently unsolved. The early literature found that the omission of 
M and the use of panel data settings lead the estimation results towards substitutability (see Frondel (2004)). The 
estimations in the literature usually were characterized by using a TCF, one kind of capital and a time trend to model 
technological change. 
In this paper, a panel data setting was used to estimate three models to compute CPEs  and TES and also we 

control for technological change by using DEFIR & and two kinds of capital. In order to do so, first, we extend 
the Thomsen's methodology to be applied to a panel data context developing a new estimation method applied 
jointly with the GMM-SYS to deal with the dynamics of the system. Second, an ECM was estimated by using a 
Cobb-Douglas production function; and finally, we estimate a TCF with three and four factors to check if the results 
are robust to an omitted variable bias (as claimed in Frondel (2004)). 
Regarding the GL, the estimated CPEs  in the long run show that all kinds of capital and energy are weak 
substitutes whereas in the short run, the scope for firms to substitute capital for energy is still weaker. Moreover, the 

estimation shows that, in the short run, there is only a relationship between buildings ( 1K ) and energy, since the 

CPEs for machinery (i.e. 2K ) were not statistically significant. 

In relation to the ECM, it is found that with the actual level of technology, firms face more limitation to substitute 
capital for energy when capital is invested in machinery than when it is invested in buildings. Finally, it was found 
that the TCF suggests clear complementarity when we use both three (i.e. K , E and L ) and four (i.e. ,K ,L E and 

M ) factors. This result challenges the conclusion reached by Berndt and Wood (1979) and Frondel and Schmidt 

                                                 
33I.e. basic metals, chemical, transport equipment and machinery. These industries present the largest absolute value of the estimated elasticities 
and therefore, the strongest dependence between capital and energy. 
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(2002). It is shown that by using a panel data setting and also by the omission of M in the estimation cannot fully 
determine substitutability once we disaggregate by industry and by capital. Furthermore it is shown that using 
different kinds of capital can make the estimation more robust even when M is dropped from the specification. 
In relation to each of the eight industries, there is clear evidence that those that are more vulnerable to changes in 
energy prices are industries 1, 2, 4 and 5 (i.e. basic metals, chemical, transport equipment and machinery), according  
to the  TCF. 
In short, we find clear evidence of complementarity when using the TCF while when using the GL, the conclusion 
was weak substitutability. Moreover, the substitution between capital and energy is more limited when capital is 
invested in machinery than when it is invested in buildings. Therefore, a policy of increasing energy prices to reduce 
energy consumption will seriously affect investment and, in particular, it will be more harmful for the industries of 
basic metals, chemical, transport equipment and machinery that are the ones that show stronger dependence between 
energy and capital. A better policy may be to encourage technological diffusion. Additionally, the GL also provide 
evidence that there is a rebound effect since the estimated DEFIR & coefficients are also positive. Using data to 
firm level may help to distinguish even further for which industries an increase of energy prices can be more 
harmful; however, there is still a pending issue about the proper way to measure the substitution among productive 
factors and this is an objective of future research. 
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Appendix A 
Table 1: Estimation results for the coefficients of the energy-price TCF given by equation (eq5). 

GG   0.0907*** (0.0163) 

GEl  -0.1613*** (0.0142) 

GO   0.0334** (0.0104) 

ElEl
0.2077*** (0.0290) 

EO   -0.0010 (0.0126) 

OO   0.0116 (0.0136) 

Gt̃h  
8DV  

Elt̃h  
8DV  

Ot̃h  
8DV  

Gh   8DV  

Elh   8DV  

Oh   8DV  

Standard errors are given in parenthesis. 8DV denotes that eight dummy variables are used for the fixed effects in the regression. "*": significant 
at 10 percent level. "**": significant at 5 percent level. "***": significant at 1 percent level. Note that the value of the parameters related to Coal 
can be obtained by the constraint (eq6). The parameters related to the dummy variables are available upon request from the authors. 

 
Table 2: Estimation results for the  KLEM   parameters based on the share cost system given by equation 
(eq1). 

 EE   0.0066 (0.0072)
 K2 t̃5  

0.0134*** (0.0035)

 EK1   -0.0249*** (0.0064)
 K2 t̃6  

0.0103*** (0.0031)

 EK2   -0.0294*** (0.0070)
 K2 t̃7  

-0.0061 (0.0043)

 EL   0.01420** (0.0058)
 K2 t̃8  

0.0050 (0.0039)

 K1K1
0.0759*** (0.0130)

 Lt̃1   
-0.0088***(0.0031)

 K1K2
-0.0456*** (0.0107)

 Lt̃2   
-0.0064 (0.0046)

 K1L   0.0124 (0.0080)
 Lt̃3   

-0.0017 (0.0037)

 K2K2
0.1109*** (0.0175)

 Lt̃4   
0.0172*** (0.0045)

 K2L   -0.0279*** (0.0090)
 Lt̃5   

0.0091*** (0.0035)

 LL   0.0267*** (0.0094)
 Lt̃6   

-0.0028 (0.0033)

 Et̃1   
0.0003 (0.0029)

 Lt̃7   
0.0035 (0.0043)

 Et̃2   
0.0042 (0.0044)

 Lt̃8   
0.0033 (0.0037)

 Et̃3   
0.0073** (0.0035)

 Eyh   
8DV  

 Et̃4   
0.0002 (0.0045)

 K1yh  
8DV  

 Et̃5   
0.0021 (0.0034)

 K2yh  
8DV  

 Et̃6   
-0.0012 (0.0026)

 Lyh   
8DV  

 Et̃7   
0.0005 (0.0040)

 yyh   
8DV  

 Et̃8   
0.0001 (0.0038)

  t̃t̃h   
8DV  

 K1 t̃1   
0.0086*** (0.0030)

  t̃yh   
8DV  
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Table 2: Estimation results for the  KLEM (Continuation) 

K1 t̃2  
-0.0009 (0.0045)  E h   8DV  

 K1 t̃3
-0.0013 (0.0036) 

 K1h  
8DV  

 K1 t̃4
0.0092** (0.0045) 

 K2h  
8DV  

 K1 t̃5
0.0067** (0.0034)  Lh   8DV  

 K1 t̃6
0.0026 (0.0030)  0   8DV  

 K1 t̃7
0.0054 (0.0042)    

 K1 t̃8
0.0004 (0.0038)    

 K2 t̃1
0.0103*** (0.0031)    

 K2 t̃2
0.0040 (0.0046)    

 K2 t̃3
0.0053 (0.0037)    

 K2 t̃4
0.0062 (0.0047)    

See footnote in Table 1 for notation used in this Table. Additionally, note that the value of the parameters related to intermediate materials can be 
obtained by the constraint (eq2). The parameters related to the dummy variables are available upon request from the authors.  

 
Table 3: Estimation results for CPEs based on KLEM  model specification, given by equation (eq10). 

 

 

Table 4: Estimation results for  CPEs   based on the  KLE   model specification, given by equation (eq10). 

 
K11

pE1

-0.0820 (0.2754) 
 
K21

pE1

-0.6185 (2.9585)

 
K12

pE2

-0.1168 (0.3843) 
 
K22

pE2

-0.2903 (2.2765)

 
K13

pE3

-0.0778 (0.3869) 
 
K23

pE3

0.0633 (1.0108)

 
K14

pE4

-0.0878 (0.2669) 
 
K24

pE4

-1.1789 (4.6816)

 
K15

pE5

-0.1193 (0.3809) 
 
K25

pE5

-0.6220 (2.5815)

 
K16

pE6

-0.0865 (0.2822) 
 
K26

pE6

-0.7466 (3.1930)

 
K17

pE7

-0.4105 (1.1970) 
 
K27

pE7

-0.3601 (1.3720)

 
K18

pE8

-0.1263 (0.3804) 
 
K28

pE8

-0.7608 (3.4683)

For table 3 and 4 ,see footnote in Table 1 for notation used in these tables. 

 
K11

pE1

-0.1646*** (0.0464)
 
K21

pE1

-1.7064***(0.4598)

 
K12

pE2

-0.2388*** (0.0668)
 
K22

pE2

-1.1845***(0.3466)

 
K13

pE3

-0.1900*** (0.0593)
 
K13

pE3

-0.4697***(0.1753)

 
K14

pE4

-0.1592*** (0.0437)
 
K14

pE4

-2.6993***(0.6982)

 
K15

pE5

-0.2726*** (0.0735)
 
K15

pE5

-2.2466***(0.5657)

 
K16

pE6

-0.1730*** (0.0477)
 
K16

pE6

-2.3240***(0.6001)

 
K17

pE7

-1.4845*** (0.3883)
 
K17

pE7

-1.4322***(0.3475)

 
K18

pE8

-0.2249*** (0.0608)
 
K18

pE8

-2.4585***(0.6472)
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Table 5: Estimation results of the long run  GL specification given by equation (eq15). 

 EE   -0.0077 (0.0119)

 EK1   0.0252*** (0.0089)

 EK2   0.0251** (0.0105)

 EL   0.0115* (0.0064)

 EM   -0.0288*** (0.0095)

 K1K1
-0.0641** (0.0260)

 K1K2
0.0937*** (0.0178)

 K1L   -0.0812*** (0.0112)

 K1M  0.1523*** (0.0196)

 K2K2
-0.0985 (0.0741)

 K2L   0.0706** (0.0327)

 K2M  0.2235*** (0.0450)

 LL   0.2772*** (0.0212)

 LM   0.0065 (0.0203)

 MM   0.2607*** (0.0360)

  t̃t̃1   
0.0133*** (0.0030)

  t̃t̃2   
0.0060** (0.0030)

  t̃t̃3   
-0.0003 (0.0040)

  t̃t̃4   
0.0345*** (0.0040)

  t̃t̃5   
-0.0010*** (0.0030)

  t̃t̃6   
0.0047 (0.0030)

  t̃t̃7   
0.0040 (0.0034)

  t̃t̃8   
0.0127*** (0.0036)

See footnote in Table 1 for notation used in this Table.  
 

Table 6: Estimation results of the long run  EoS  based on the GL  specification given by equation (eq16). 

 
K11

pE1

0.0962*** (0.0339)
 
K21

pE1

0.0430**(0.0180)

 
K12

pE2

0.0918*** (0.0324)
 
K22

pE2

0.0415**(0.0174)

 
K13

pE3

0.0980*** (0.0345)
 
K23

pE3

0.0424**(0.0177)

 
K14

pE4

0.0852*** (0.0300)
 
K24

pE4

0.0398**(0.0166)

 
K15

pE5

0.1028*** (0.0362)
 
K25

pE5

0.0436**(0.0183)

 
K16

pE6

0.0946*** (0.0334)
 
K26

pE6

0.0424**(0.0177)

 
K17

pE7

0.1035*** (0.0365)
 
K27

pE7

0.0394**(0.0165)

 
K18

pE8

0.0928*** (0.0327)
 
K28

pE8

0.0412**(0.0172)

See footnote in Table 1 for notation used in this Table. 
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Table 7: Estimation results of the short run parameters based on the GL  specification of the equations 
input-output given by equation (eq21). 

    -2.0398*** (0.5532) 

 1   -1.2674** (0.7531) 

 2   -0.8822*** (0.1486) 

 3   2.9010 (1.8062) 

 4   -0.9755 (1.0301) 

 5   -1.8862** (0.8258) 

 6   -0.2544 (0.4848) 

 7   2.2260 (1.7938) 

 8   -2.2446* (0.4364) 

 ̃EE   -0.0101 (0.0286) 

 ̃EK1   0.0454* (0.0266) 

 ̃EK2   0.0052 (0.0396) 

 ̃EL   0.0225** (0.0112) 

 ̃EM   -0.0379* (0.0213) 

 ̃K1K1   -0.1238 (0.0987) 

 ̃K1K2   0.1472*** (0.0387) 

 ̃K1L   -0.1038*** (0.0156) 

 ̃K1M   0.1596*** (0.0423) 

 ̃K2K2   -0.1078 (0.2624) 

 ̃K2L   0.0661 (0.0978) 

 ̃K2M   0.2027 (0.1418) 

 ̃LL   0.2865*** (0.0556) 

 ̃LM   0.0142 (0.0548) 

 ̃MM   0.2752** (0.0930) 

 ̃ t̃t̃1   
0.0136** (0.0060) 

2
~~

~
tt  0.0055 (0.0113) 

 ̃ t̃t̃3   
-0.0001 (0.0074) 

 ̃ t̃t̃4   
0.0343*** (0.0116) 

 ̃ t̃t̃5   
-0.0096 (0.0099) 

 ̃ t̃t̃6   
0.0047 (0.0060) 

 ̃ t̃t̃7   
0.0040 (0.0141) 

 ̃ t̃t̃8   
0.0127*** (0.0044) 

Arellano-Bond test for AR(1)-1.76  P − value  =0.079
Arellano-Bond test for AR(2)-0.22  P − value  =0.827
See footnote in Table 1 for notation used in this Table.
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Table 8: Estimation results of the short run EoS based on the GL  specification given by equation (eq16). 

 
K11

pE1

0.1714* (0.1005) 
 
K21

pE1

0.0090 (0.0683)

 
K12

pE2

0.1648* (0.0966) 
 
K22

pE2

0.0087 (0.0656)

 
K13

pE3

0.1768* (0.1036) 
 
K23

pE3

0.0089 (0.0670)

 
K14

pE4

0.1533* (0.0899) 
 
K24

pE4

0.0083 (0.0630)

 
K15

pE5

0.1834* (0.1075) 
 
K25

pE5

0.0091 (0.0690)

 
K16

pE6

0.1686* (0.0988) 
 
K26

pE6

0.0089 (0.0671)

 
K17

pE7

0.2006* (0.1176) 
 
K27

pE7

0.0081 (0.0611)

 
K18

pE8

0.1672* (0.0980) 
 
K28

pE8

0.0086 (0.0652)

See footnote in Table 1 for notation used in this Table. 

 

Table 9: Tests for a common unit root: Levin, Lin, and Chu ( LLC  , 2002) and Breitung (2000). 

 Levels Levels First differencesFirst differences 
Null:common unit root process  LLC   Breitung  t  -stat LLC   Breitung  t  -stat 

 E   -2.9319*** -2.0553** -8.4115*** 0.3418 

 K1   -7.1817*** 3.6483 -11.0840*** -8.9659*** 

 K2   -3.3529*** -0.7121 -4.3853*** -3.9532*** 

 L   -3.6179*** -0.4884 -4.9019*** -4.0408*** 

 M   2.6868 9.1312 -1.8084** -4.5858*** 

 IR&DEF   -1.3199 -0.9862 -13.3448*** -4.6862*** 

 y   0.3683 6.3036 -2.6277*** -4.8213*** 

"*" denotes rejection of the null hypothesis at 10 percent level, "**" at 5 percent level and "***" at 1 percent level. 

 
Table 10: Tests for individual unit root: Im, Pesaran and Shin ( IPS , 2003), Augmented Dickey Fuller 

( ADF ) and Phillip-Perron ( PP ). 

Series in levels    
  IPS    ADF  -Fisher PP  -Fisher

 E   -1.9874** 30.5644** 52.4336***

 K1   -4.4823***46.9313*** 40.5891***

 K2   0.1891 22.4298 10.1968 

 L   -0.2756 19.9994 4.1604 

 M   6.4112 1.8019 3.8321 

 IR&DEF   -1.5712** 21.6382 34.8997***

 y   3.5521 18.3578 6.0799 

First differences   

 E   -7.8269***113.9340*** 91.8918***

 K1   -9.3789***104.2700*** 49.5041***

 K2   -3.7331***46.5842*** 43.4554***

 L   -6.2217***65.3152*** 87.7057***
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Table 10 (Continuation) 

M   -8.4268*** 92.2833*** 198.439***

 IR&DEF -12.8364*** 171.0940*** 175.431***

 y   -7.2094*** 77.0375*** 87.0090***

"*" denotes rejection of the null hypothesis at 10 % level, "**" at 5 percent level and "***" at 1 percent level. 

 
Table 11: Pedroni (2004) test for cointegration. 

Alternative hypothesis: common autoregressive coefficients (within-dimension)  

Panel  v  -Statistic 2.0895** 

Panel  rho  -Statistic 0.3065 

Panel  PP  -Statistic -2.8598*** 

Panel  ADF  -Statistic 0.3754 

Alternative hypothesis: individual autoregressive coefficients (between-dimension) 

Group  rho  -Statistic 2.0007 

Group  PP  -Statistic -0.6011 

Group  ADF  -Statistic 0.5506 

"*" denotes rejection of the null hypothesis at 10 % level, "**" at 5%  level and "***" at 1 % percent level. 

 
Table 12: Estimation results of the Error Correction parameters given by equation (eq27). 

 ̃K11   
0.4353* (0.2557)

 ̃M1  
-0.7343*** (0.2573)

 ̃K12   
0.05227 (0.2085)

 ̃M2  
0.1482 (0.1234)

 ̃K13   
0.5039*** (0.1420)

 ̃M3  
-0.0662 (0.325) 

 ̃K14   
0.0765 (0.1766)

 ̃M4  
0.0621 (0.3594)

 ̃K15   
0.7650** (0.3635)

 ̃M5  
-4.244*** (0.4156)

 ̃K16   
1.4190*** (0.3236)

 ̃M6  
-6.5127*** (0.7809)

 ̃K17   
-0.2559 (0.2666)

 ̃M7  
0.2880 (2.6086)

 ̃K18   
0.1693 (0.1580)

 ̃M8  
0.8302*** (0.2476)

 ̃K21   
1.5887*** (0.3264)

 ̃t 1  
0.0179 (0.0426)

 ̃K22   
1.4008** (0.5624)

 ̃t 2  
0.0011 (0.0015)

 ̃K23   
-1.1477***(0.4003)

 ̃t 3  
-0.1544 (0.1279)

 ̃K24   
1.4035*** (0.2960)

 ̃t 4  
0.0048** (0.0023)

 ̃K25   
4.1575*** (0.7003)

 ̃t 5  
-0.0108*** (0.003) 

 ̃K26   
1.0160*** (0.2634)

 ̃t 6  
0.3593*** (0.1365)

 ̃K27   
0.2369 (0.7513)

 ̃t 7  
0.0993 (0.0674)

 ̃K28   
-0.7160 (0.6258)

 ̃t 8  
0.36155***(0.1316)

 ̃L1   
-1.4460***(0.1708)

 1   
1.3561*** (0.3778)

 ̃L2   
0.1498 (0.2971)

 2   
-0.0811 (0.1815)

 ̃L3   
0.2143 (0.2967)

 3   
-0.4009 (0.4318)

 ̃L4   
-0.3198 (0.2833)

 4   
-0.3990 (0.339) 
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Table 12: (Continuation) 

̃L5   
-3.5484***(0.3807) 

 5
5.7428*** (0.5822)

 ̃L6   
-3.5715***(0.2760) 

 6
8.9029*** (0.9225)

 ̃L7   
1.4399*** (0.4954) 

 7
-0.8622 (4.5357)

8
~

L  0.0478 (0.2663) 
 8

-0.6908***(0.2231)

 K1   
-0.0371 (0.1270)    

 K2   
-0.4440***(0.1091)    

(  − 1  ) 
0.3189*** (0.1184)    

 L   
0.1364 (0.2225)    

 M   
0.1942 (0.2883)    

  t̃   
-0.0079** (0.0036)    

    
-0.2132 (0.3446)    

 Ah   
8DV     

 A − B  for AR(1)
-2.51 

 P − value  =0.012
   

 A − B  for AR(2)
0.79 

 P − value  =0.431
   

Hansen test 0 
 P − value  =1 

   

Sargan test 11.92 
 P − value  =0.03 

   

See footnote in Table 1 for notation used in this Table. 
The parameters related to the dummy variables are available upon request from the authors. 

 
Table 13: Alternative tests of cointegration based on the residuals of the  ECM  . 

Null: Unit root (assumes common unit root process)  
Levin, Lin & Chu* -19.1334***
Null: Unit root (assumes individual unit root process) 

 ADF   - Fisher Chi-square 481.4740***

 PP   - Fisher Chi-square 432.9090***

"*" denotes rejection of the null hypothesis at 10 percent level, "**" at 5 percent level and "***" at 1 percent level. 

 
Table 14: Short and long run elasticities based on specification (eq27) and (eq28). 

 TESE1K11
0.4353* (0.2557) 

 TESE1K21
1.5887*** (0.3264)

 TESE2K12
0.0523 (0.2085) 

 TESE2K22
1.4008** (0.5624)

 TESE3K13
0.5039*** (0.1420) 

 TESE3K23
-1.1477***(0.4003)

 TESE4K14
0.0765 (0.1766) 

 TESE4K24
1.4034*** (0.2960)

 TESE5K15
0.7657** (0.3635) 

 TESE5K25
4.1575*** (0.7003)

 TESE6K16
1.4190*** (0.3236) 

 TESE6K26
1.0161*** (0.2634)

 TESE7K17
-0.2560 (0.2666) 

 TESE7K27
0.2369 (0.7513)

 TESE8K18
0.1694 (0.1580) 

 TESE8K28
-0.7160 (0.6258)

 TESEK1

LR
  

0.1162 (0.3845) 
 TESEK2

LR
  

1.3924*** (0.5159)

See footnote in Table 1 for notation used in this Table. Additionally, LR  denotes Long Run. 
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Appendix B 
Table B1: Estimated results of the own price-elasticities based on the  TCF  , given by equation (eq11). 

Industries  E    K1    K2    L    M   
1 -0.5490 -0.3134*** -0.2837*** -0.6675***-0.5353***
 (0.4759) (0.0941) (0.0772) (0.0477) (0.0647) 
2 -0.6520* -0.1140 -0.3205*** -0.6734***-0.5106***
 (0.3587) (0.1355) (0.0641) (0.0583) (0.0608) 
3 -0.7942*** -0.1910 -0.3177*** -0.6623***-0.5793***
 (0.1814) (0.1203) (0.0654) (0.0445) (0.0733) 
4 -0.3290 -0.3370*** -0.2938*** -0.6682***-0.5447***
 (0.7227) (0.0885) (0.0741) (0.0483) (0.0663) 
5 -0.4520 -0.0440 -0.0260 -0.6384***-0.4548***
 (0.5856) (0.1491) (0.1327) (0.0365) (0.0536) 
6 -0.4200 -0.3021** -0.2428*** -0.6600***-0.5215***
 (0.6211) (0.0966) (0.0880) (0.0434) (0.0624) 
7 -0.6510* 3.6049*** 2.9302*** -0.6607***-0.2559***
 (0.3596) (0.7874) (0.6147) (0.0437) (0.0380) 
8 -0.3760 -0.1760 -0.3147*** -0.6545***-0.5622***
 (0.6699) (0.1233) (0.0667) (0.0411) (0.0696) 
See footnote in Table 1 for notation used in this Table.  

 
Table B2: Estimated results of the long run own price elasticities based on the GL specification given by equation 
(eq17). 

Industries  E    K1    K2    L    M   
1 -0.6418** -0.7176*** -0.6439*** -0.0110 -0.2779***
 (0.2881) (0.0910) (0.1104) (0.0373)(0.0309) 
2 -0.4994** -0.6933*** -0.6333*** -0.0090 -0.2765***
 (0.2237) (0.0900) (0.1091) (0.0372)(0.0305) 
3 -0.7043** -0.7353*** -0.6449*** -0.0060 -0.2789***
 (0.3116) (0.0954) (0.1090) (0.0380)(0.0310) 
4 -0.3417** -0.6382*** -0.6090*** -0.0080 -0.2692***
 (0.1516) (0.0824) (0.1035) (0.0353)(0.0300) 
5 -1.2981** -0.7838*** -0.6691*** -0.0110 -0.2854***
 (0.5657) (0.1009) (0.1163) (0.0392)(0.0313) 
6 -0.7247** -0.7314*** -0.6519*** -0.0110 -0.2807***
 (0.3122) (0.0927) (0.1134) (0.0376)(0.0308) 
7 -0.5784** -0.7665*** -0.6317*** 0.0140 -0.2840***
 (0.2258) (0.1161) (0.1029) (0.0393)(0.0299) 
8 -0.5065** -0.6958*** -0.6299*** -0.0070 -0.2742***
 (0.2269) (0.09) (0.1058) (0.037) (0.0308) 
See footnote in Table 1 for notation used in this Table.  

Table B3: Estimated results of the short run own price elasticities based on the  GL   specification given by equation 
(eq17). 

Industries  E    K1    K2    L    M   
1 -0.7110 0.9203*** -0.6590* 0.0030 -0.2653***
 (0.7308) (0.3405) (0.3939) (0.0969)(0.0788) 
2 -0.5450 -0.8959** -0.6480* 0.0060 -0.2642***
 (0.4731) (0.3361) (0.3863) (0.1010)(0.0777) 
3 -0.7720 -0.9537*** -0.6590* 0.0090 -0.2665***
 (0.7681) (0.3616) (0.3858) (0.0985)(0.0785) 
4 -0.3690 -0.8259*** -0.6230* 0.0050 -0.2572***
 (0.3618) (0.3092) (0.3671) (0.0914)(0.0760) 
5 -1.4800 -1.0070*** -0.6840* 0.0050 -0.2725***
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Table B3: (Continuation) 

 (1.5041) (0.3761) (0.4180) (0.1023) (0.0818) 
6-0.8080 -0.9381*** -0.6670* 0.0050 -0.2681***
 (0.8115) (0.3472) (0.4033) (0.0983) (0.0785) 
7-0.6110 -1.0676** -0.6420* 0.0350 -0.2725***
 (0.6003) (0.4965) (0.3570) (0.1037) (0.0769) 
8-0.5520 -0.9011*** -0.6440* 0.0070 -0.2619***
 (0.5441) (0.3389) (0.376) (0.0964) (0.0782) 
See footnote in Table 1 for notation used in this Table. 
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