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ABSTRACT 

This paper estimates a US ‘frontier’ residential aggregate energy demand 
function using panel data for 48 ‘states’ over the period 1995 to 2006 
using stochastic frontier analysis (SFA).  Utilizing an econometric energy 
demand model, the (in) efficiency of each state is modelled and it is 
argued that this represents a measure of the inefficient use of residential 
energy in each state (i.e. ‘waste energy’).  This underlying efficiency for 
the US is therefore observed for each state as well as the relative 
efficiency across the states.  Moreover, the analysis suggests that energy 
intensity is not necessarily a good indicator of energy efficiency, whereas 
by controlling for a range of economic and other factors, the measure of 
energy efficiency obtained via this approach is.  This is a novel approach 
to model residential energy demand and efficiency and it is arguably 
particularly relevant given current US energy policy discussions related 
to energy efficiency. 
 
 
JEL Classifications: D, D2, Q, Q4, Q5. 
 
 
Key Words: US residential energy demand; efficiency and frontier 
analysis; state energy efficiency. 
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1 Introduction 

The promotion of energy efficiency policy is seen as a very important activity by both 

the International Energy Agency (IEA) and the Energy Information Agency (EIA) (e.g. see 

IEA, 2009).  Moreover, the role of energy efficiency in reducing energy consumption and 

emissions remains a key policy objective for governments across the globe; and the US is no 

exception.  Since the beginning of the Obama administration, there have been many policy 

announcements involving energy efficiency in one way or another; you just have to look at the 

US Department of Energy press web site to see the many different announcements.1  

Nevertheless, it is worth noting that a number of the announcements during the Obama period 

build upon initiatives from the Bush administration, such as The Energy Efficiency and 

                                                 
 Acknowledgements 
A preliminary version of the paper was presented at the 33rd IAEE International Conference, Rio de Janeiro, 
Brazil, 2010; the 3rd International workshop on Empirical Methods in Energy Economics, SEEC, University of  
Surrey, UK, 2010; and the 11th IAEE European Conference, Vilnius, Lithuania, 2010 and we are grateful to 
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1 www.energy.gov/news/releases.htm.  
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Conservation Block Grant (EECCBG); initially put in place in 2007 to help implement energy 

efficiency and conservation measures.2  Given its importance, and the many millions of US 

dollars allocated across the different states it is vital that US policy makers understand, and are 

able to clearly measure, the relative energy efficiency across the different states.  However, 

generally this is not the case, which is not a new problem; the EIA (1995) report states: 

“Energy efficiency is a vital component of the Nation's energy strategy. One of 
the Department of Energy's missions are to promote energy efficiency to help 
the Nation manage its energy resources. The ability to define and measure 
energy efficiency is essential to this objective. In the absence of consistent 
defensible measures, energy efficiency is a vague, subjective concept that 
engenders directionless speculation and confusion rather than insightful analysis. 
... The task of defining and measuring energy efficiency and creating statistical 
measures as descriptors is a daunting one.” (p. vii, our emphasis). 
 

This clearly supports the view above, but the EIA (1995) report goes on to discuss the use of 

energy intensity as a “measurement indicator of energy efficiency” (p. vii) highlighting that 

energy intensity and energy efficiency are often used interchangeably; furthermore, energy 

intensity might not reflect certain factors that would allow energy intensity to approximate 

energy efficiency accurately. In particular, trends in different measures of energy intensity are 

generally suggestive of trends in energy efficiency but the trends in energy intensity are likely 

to be influenced by factors other than just energy efficiency. Moreover, the EIA (1995) report 

states that 

“it is virtually impossible to remove, or even to consider, all of the behavioral or 
structural factors that would be necessary to obtain a pure measurement of 
energy efficiency, however broadly energy efficiency may be defined.” (p. vii). 
 

This clearly highlights the problems in trying to measure energy efficiency in general and the 

use of energy intensity in particular as a proxy for it.  Furthermore, given the problems with 

                                                 
2 www1.eere.energy.gov/wip/eecbg.html.  
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energy intensity, it shows that there is a need to ‘control’ for other important factors in order to 

get ‘pure’ measure of energy efficiency.  This therefore is one of the key aims of this paper 

with respect to the US residential sector. 

 

The EIA (1995) report goes on to consider the measurement of energy intensity in a 

number of sectors of the US economy attempting, where possible, to remove the influence of 

such factors as weather, capacity, and inventory changes that are commonly viewed as not 

related to changes in energy efficiency. For the residential sector, the EIA (1995) report 

suggests four energy intensity measures applicable as proxies for energy efficiency: i) million 

BTUs per building; ii) million BTUs per household; iii) thousand BTUs per square foot; and 

iv) million BTUs per household member.3 However, the report suggests that these are 

imperfect and that “No single energy-intensity indicator for the residential sector stands out as 

clearly superior to the others. The choice of indicator depends on the questions asked and on 

data and resource availability” (p. 16).  

 

Some approaches have been proposed in the energy economics literature in order to 

overcome the problems of some of these simple efficiency indicators; such as Index 

Decomposition Analysis (IDA) and Frontier Analysis.  IDA is basically a bottom-up 

framework used to create energy efficiency indicators.4 For instance, the US Department of 

Energy has introduced an Energy Intensive Index using the decomposition approach that 

attempts to separate the difference factors that affect energy efficiency from non-efficiency 

                                                 
3 BTU = British Thermal Unit; the quantity of heat required to raise the temperature of 1 pound of liquid water by 
1 degree Fahrenheit at the temperature at which water has its greatest density. 

4 See Boyd and Roop (2004) and Ang (2006) for a general discussion and application of this method. 
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factors.5  Whereas frontier analysis is based on the estimation of a parametric, as well as a non-

parametric, best practice frontier for the use of energy where the level of energy efficiency is 

computed as the difference between the actual energy use and the predicted energy use.6 

 

As stated above, the aim of this paper is to attempt to construct and measure the 

‘underlying energy efficiency’ for the US residential sector across 48 ‘states’;7 building on 

previous work by Filippini and Hunt (2011).  This draws upon different strands of the energy 

economics research literature; in particular, frontier estimation and energy demand modelling.  

An aggregate energy demand frontier function is estimated in order to isolate the measure of 

‘underlying energy efficiency’; explicitly controlling for income and price effects, population, 

household size, weather, types of housing, regional effects, and a common Underling Energy 

Demand Trend (the UEDT, capturing both ‘exogenous’ technical progress and other 

exogenous factors8).  Furthermore, the UEDT needs to be specified in such a way that it is 

                                                 
5 See www1.eere.energy.gov/ba/pba/intensityindicators/.  It is argued that the new index gives a more accurate 
representation of intensity change associated with energy efficiency improvement than the simple energy/activity 
ratios. 

6 Huntington (1994) discusses the relation between energy efficiency and productive efficiency using the 
production theory framework.  Zhoe and Ang (2008) is an example of a non-parametric approach, where the 
energy efficiency performance of 21 OECD countries over 5 years (1997-2001) is measured using a DEA model. 
Examples of the use of parametric frontier analysis at the sectoral level are Buck and Young (2007) who measured 
the level of energy efficiency of a sample of Canadian commercial buildings and Boyd (2008) who estimated an 
energy use frontier function for a sample of wet corn milling plants. In addition, Filippini and Hunt (2011) 
estimate a panel ‘frontier’ whole economy aggregate energy demand function for 29 OECD countries over the 
period 1978 to 2006 using parametric stochastic frontier analysis (SFA).   

7 The reason for the use of only 48 states is explained below. 

8 Hence, this method allows for the impact of ‘endogenous’ technical progress’ through the price effect and 
‘exogenous’ technical progress through the UEDT. 
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‘non-linear’ and therefore could increase and/or decrease over the estimation period,9 and 

given a panel data set is used, this is achieved by the inclusion of time dummies.10 

 

In summary, in order to try to uncover these different influences, a general energy 

demand relationship for US residential energy demand relating energy consumption to 

economic activity and the real energy price is estimated for a panel of 48 states; but controlling 

for other important factors that vary across states and hence can affect a states’ residential 

energy demand.  This attempts to isolate the ‘underlying energy efficiency’ for each state. The 

estimated model therefore isolates the level of underlying energy efficiency, defined with 

respect to a benchmark, e.g. a best practice economy in the use of energy by estimation a 

‘common energy demand’ function across states, with homogenous income and price 

elasticities, and responses to other factors, plus a homogenous UEDT.  This is seen as 

important, given the need to isolate the underlying energy efficiency across the different 

states.11  Consequently, once these effects are controlled for, it allows for the estimation of the 

underlying energy efficiency for each country showing the differences in efficiency across the 

panel of states. 

 

The paper is organized as follows. The next section, discusses the rationale and 

specification of the energy demand frontier function, with the data and econometric 

                                                 
9 As advocated by Hunt et al. (2003a and 2003b) 

10 As proposed by Griffin and Schulman (2005) and Adeyemi and Hunt (2007). 

11 The UEDT includes exogenous technical progress of the appliance and building stock and it could be argued 
that even though technologies are available to each state they are not necessarily installed at the same rate.  
However, it is assumed that this results from different behaviour across states and reflects ‘inefficiency’ across 
states; hence, it is captured by the different (in)efficiency terms for all states.  
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specification introduced in Section 3.  The results of the estimation are presented in Section 4, 

with a summary and conclusion in the final section. 

 

 

2 An aggregate frontier energy demand model  

Residential demand for energy is a demand derived from the demand for a warm house, 

cooked food, hot water, etc., and can be specified using the basic framework of household 

production theory.  According to this theory, households purchase market ‘goods’ that serve as 

inputs in the production processes, to produce the ‘commodities’ which appear as arguments in 

the household's utility function. Within the framework of the household production theory, the 

aggregate residential energy demand is an input demand function.12   

 

Given the discussion above, it is assumed that there exists an aggregate US residential 

energy demand relationship for a panel of states, as follows: 

Eit = E(Pit, , Yit , POPit , HSit , HDDit , CDDit , SHit, Dt, EFit) (1) 

where Eit is aggregate residential energy consumption, Yit is real income, Pit is the real energy 

price, POPit is population, HSit is the average house size, HDDit are the heating degree days, 

CDDit are the cooling degree days, SHit is the share of detached houses for state i in year t.  Dt 

is a series of time dummy variables. Finally, EFit is the level of ‘underlying energy efficiency’ 

of the US residential sector.  This could incorporate a number of factors that will differ across 

states, including the different technical appliance and capital equipment, different regulations 

                                                 
12 For a presentation of the household production theory, see Deaton and Muellbauer (1980). See Filippini (1999) 
and Banfi et al. (2007) for an application of household production theory to energy demand analysis. 

 



US Residential Energy Demand and Energy Efficiency: A stochastic demand frontier approach  Page 7 of 24 

as well as different social behaviours, norms, lifestyles and values.  Hence, a low level of 

underlying energy efficiency implies an inefficient use of energy (i.e. ‘waste energy’), so that 

in this situation, awareness of energy conservation could be increased in order to reach the 

‘optimal’ energy demand function.  Nevertheless, from an empirical perspective, when using 

US aggregate energy data, the aggregate level of energy efficiency of residential appliances is 

not observed directly. Therefore, this underlying energy efficiency indicator has to be 

estimated. Consequently, in order to estimate the residential level of underlying energy 

efficiency (EFit) and identify the best practice system in term of energy utilization, the 

stochastic frontier function approach introduced by Aigner et al. (1977) is used.  

 

The stochastic frontier function has generally been used in production theory to 

measure econometrically the economic performance of production processes. The central 

concept of the frontier approach is that in general the function gives the maximum or minimum 

level of an economic indicator attainable by an economic agent. For an input demand function 

the frontier gives the minimum level of input used by a firm or a household for any given level 

of output; hence, the difference between the observed input and the cost-minimizing input 

demand represents both technically as well allocative inefficiency.13 In the case of an aggregate 

residential energy demand function, used here, the frontier gives the minimum level of energy 

consumption necessary for the residential sector to produce any given level of energy services. 

In principle, the aim here is to apply the frontier function concept in order to estimate the 

baseline energy input demand, which is the frontier that reflects the demand of the residential 

sector of a state that use high efficient equipment and production process. This frontier 

                                                 
13 See Kumbhakar and Lovell (2000, p. 148) for a discussion on the interpretation of the efficiency in an input 
demand function. 
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approach allows the possibility to identify if a state is, or is not, on the frontier. Moreover, if a 

state is not on the frontier, the distance from the frontier measures the level of energy 

consumption above the baseline demand, e.g. the level of energy inefficiency.  

 

The approach used in this study is therefore based on the assumption that the level of 

the energy efficiency of the residential sector can be approximated by a one-sided non-negative 

term, so that a panel log-log functional form of Equation (1) adopting the stochastic frontier 

function approach proposed by Aigner et al. (1977)  can be specified as follows: 

  (2) 

where eit is the natural logarithm of aggregate energy consumption (Eit), pit is the natural 

logarithm of the real price of energy (Pit), yit is the natural logarithm of real income (Yit), popit 

is the natural logarithm of population (POPit), hsit is the natural logarithm of the number of 

housing units (HSit), hddit is the natural logarithm of the heating degree days (HDDit), cddit is 

the natural logarithm of the cooling degree days (CDDit) and SHit, and Dt as defined above. 

Furthermore, the error term in Equation (2) is composed of two independent parts.  The first 

part, vit, is a symmetric disturbance capturing the effect of noise and as usual is assumed to be 

normally distributed.  The second part, uit, which represents the underlying energy level of 

efficiency EFit in equation (1) is interpreted as an indicator of the inefficient use of energy, 

e.g. the ‘waste energy’.  It is a one-sided non-negative random disturbance term that can vary 

over time, assumed to follow a half-normal distribution.14  An improvement in the energy 

efficiency of the equipment or on the use of energy through a new production process will 

                                                 
14 It could be argued that this is a strong assumption for EF, but it does allow the ‘identification’ of the efficiency 
for each state separately. This is a standard assumption used in the production frontier literature; see Kumbhakar 
and Lovell (2000, p. 148) for a discussion. 

itit
t

it
SH

it
cdd

it
hdd

it
hs

it
pop

it
y

it
p

it uvDtSHcddhddhspopype  
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increase the level of energy efficiency of a country. The impact of technological, 

organizational, and social innovation in the production and consumption of energy services on 

the energy demand is therefore captured in several ways: the time dummy variables, the 

indicator of energy efficiency and through the price effect.  

 

In summary, Equation (2) is estimated in order to estimate underlying energy efficiency 

for each country in the sample.  The data and the econometric specification of the estimated 

equations are discussed in the next section. 

 

 

3. Data and econometric specification 

The study is based on a balanced US panel data set for a sample of 48 states (i = 1, …, 

48) over the period 1995 to 2006 (t = 1995-2006). For the purposes of this paper attention is 

restricted to the contiguous states (i.e. Alaska and Hawaii are excluded) as is Rhode Island 

because of incomplete information whereas the District of Columbia is included and 

considered as a separate ‘state’.  The data set is based on information taken from the U.S. 

Energy Information Administration database called States Energy Data System, from the US 

Department of Commerce, the US Census Bureau and the National Climatic Data Center at 

NOAA.   

 

Eit is each state’s aggregate residential energy consumption for each year in trillion 

BTUs, Yit is each state’s real disposable personal income for each year in thousand US 1982$, 

Pit is each state’s real energy price for each year in per million BTUs 1982$.  Residential 
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energy consumption figures and prices are provided by the Energy Information Administration. 

Population (POPit) and GDP are from the Bureau of Economic Analysis of the US Census 

Bureau. The heating and cooling degree days (HDDit and CDDit) are obtained from the 

National Climatic Data Center at NOAA. The typical size of a household (HSit) is obtained by 

dividing population by the number of housing units, where the latter come from the US Census 

Bureau.  Descriptive statistics of the key variables are presented in Table 1. 

Table 1: Descriptive statistics 

Variable 
Mean  Std. Dev.  Minimum  Maximum 

Description  Name 

Energy consumption 
(Trillion Btu)  E  227.630  209.64  19.80  915.6 

Real disposable personal income 
(Mio 1982US$)  

Y  588751.3  101167  6072.44  646019 

Real Price of energy  
(per million Btu)  P  15.29  4.20  7.35  32.50 

Population 
(1000)  POP  5863  6275  485  36377 

Household size 
(no. of people per housing unit)  HS  2.35  0.16  1.89  2.99 

Heating degree days 
(base: 65F)  HDD  5087  1998  555  10745 

Cooling degree days 
(base: 65F)  CDD  1142  796  128  3870 

Share of detached houses 
SH  62.30  9.74  13.20  74 

 

It is important to discuss the literature on the estimation of stochastic frontier models 

using panel data, given the econometric specification of the model. This literature identifies at 

least three models that could be used in this empirical analysis: i) the pooled model (PM 

hereafter), the stochastic frontier model (SFM) in its original form proposed by Aigner, et al., 

(1977); ii) the random effects model (REM hereafter) proposed by Pitt and Lee (1981) who 
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interpreted the panel data random effects as inefficiency rather than heterogeneity; and iii) the 

true random effects model (TREM hereafter) proposed more recently by Greene (2005a and 

2005b).15 A shortcoming of the REM is that any unobserved, time-invariant, group-specific 

heterogeneity is considered as inefficiency. Moreover, the level of efficiency is not varying 

over time. In order to solve this problem using panel data, Greene (2005a and 2005b) 

proposed the TREM by extending the PM by adding a random individual effect.16  In the 

TREM the general constant term, α, in equation (1), is substituted with a series of state-

specific random effects that take into account all unobserved socioeconomic and 

environmental characteristics that are time-invariant. The TREM is therefore able to 

distinguish time invariant unobserved heterogeneity from the time varying level of efficiency 

component. In this way, the TREM arguably overcomes some of the limitations of 

conventional frontier panel data models (see Greene, 2005a and 2005b); however, it produces 

efficiency estimates that do not include the persistent inefficiencies that might remain more or 

less constant over time. To the extent that there are certain sources of energy efficiency that 

result in time-invariant excess energy consumption, the estimates of these models provide 

relatively high levels of energy efficiency.  

 

In this study, the PM is used as the reference approach and for comparison purposes, 

the REM model and the TREM are also estimated. Of course, by not considering the individual 

effects in the econometric specification of the PM, it could result in the so-called ‘unobserved 

variables bias’; e.g. a situation where correlation between observables and unobservables could 

                                                 
15 Schmidt and Sickles (1984) and Battese and Coelli (1992) presented variations of this model.  

16 For a successful application of these models in network industries, see Farsi, et al. (2006) and Farsi, et al. 
(2005). 
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bias some coefficients of the explanatory variables. However, by introducing several 

explanatory variables such as the heating and cooling degree days and the household size it is 

possible to reduce this problem to some extent.17  Table 2 provides a summary of the model 

specification and a description of the stochastic terms included in the models.  

Table 2: Econometric specifications of the stochastic cost frontier 
 

 
PM 

Half-Normal 
REM 

Half-Normal 
TREM 

Half-Normal 
Country-specific 
component i 

 

None 
 

uit ~ N+ (0,u
2) 

 
N (0, 

2) 

Random error it 
it=uit+vit 

uit ~ N+ (0,u
2) 

vit ~ N (0,v
2) 


it ~ N (0,

2)
it=uit+vit 

uit ~ N+ (0,u
2) 

vit ~ N (0,v
2) 

Level of efficiency  uit ¦ uit+ vit) 


 uit ¦ it)
 uit ¦ it+ it)

 

The state’s efficiency is estimated using the conditional mean of the efficiency term 

 ititit vuuE  , proposed by Jondrow et al. (1982). The level of energy efficiency can be 

expressed in the following way:  

)ˆexp( it
it

F
it

it u
E

E
EF          (3) 

where Eit is the observed energy consumption per capita and F
itE  is the frontier or minimum 

demand of the ith state in time t. An energy efficiency score of one indicates a state on the 

frontier (100% efficient), while non-frontier states, e.g. states characterized by a level of 

                                                 
17 A similar approach in estimating an energy demand frontier model for OECD countries has been adopted by 
Filippini and Hunt (2011). 



US Residential Energy Demand and Energy Efficiency: A stochastic demand frontier approach  Page 13 of 24 

energy efficiency lower than 100%, receive scores below one.  This therefore gives the 

measure of underlying energy efficiency estimated below.18 

 

In summary, Equation (2) is estimated and Equation (3) is used to estimate the 

efficiency scores for each state for each year.  The results from the estimation are given in the 

next section. 

 

 

4. Estimation results  

The estimation results of the frontier energy demand models using the PM, the REM 

and the TREM are given in Table 3.  All estimated coefficients and lambda19 have the expected 

signs and almost all are statistically significant at the 10% level; the only exceptions being the 

share of detached houses in the REM.  The values of the estimated coefficients for the REM 

and the TREM are relatively similar, whereas, the values of the estimated coefficients for some 

variables are different in the REM and TREM from the PM.  This difference is probably due to 

the problem of unobserved heterogeneity mentioned above or to a limited ‘within’ variability 

of some explanatory variables.   

  

                                                 
18 This is in contrast to the alternative indicator of energy inefficiency given by the exponential of uit. In this case, 
a value of 0.2 indicates a level of energy inefficiency of 20%. 

19 Lambda (λ) gives information on the relative contribution of uit and vit on the decomposed error term εit and 
shows that in this case, the one-sided error component is relatively large. 
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Table 3: Estimated coefficients (t-values in parentheses) 
 PM REM TREM 
Constant -3.521 

(-8.47) 
-1.610 
(-2.10) 

-1.646 
(-9.57 

y 0.394 
(9.11) 

0.166 
(3.44) 

0.160 
(9.75) 

p -0.066 
(-2.18) 

-0.108 
(-3.71) 

-0.128 
(-11.83) 

pop 0.640 
(14.24) 

0.855 
(16.53) 

0.894 
(52.58) 

hs -1.113 
(-15.94) 

-0.554 
(-5.43) 

-0.450 
(-15.80) 

hdd 0.374 
(23.26) 

0.420 
(16.43) 

0.380 
(63.24) 

cdd 0.088 
(10.72) 

0.050 
(2.66) 

0.044 
(11.97) 

SH 0.004 
(8.14) 

0.001 
(0.20) 

0.002 
(8.49) 

Lamda () 0.853 
(7.72) 

5.686 
(1.71) 

1.141 
(3.42) 

 

Given that most of the variables are in logarithmic form, the coefficients can be directly 

interpreted as estimated elasticities.  The results suggest that US residential energy demand is 

price-inelastic, with estimated elasticities of -0.07 -0.11 and -0.13 for the PM, the REM and the 

TREM respectively.  The results also suggest that US residential energy demand is income-

inelastic, with an estimated elasticity of 0.39 for the PM but only about 0.16 for the REM and 

TREM.  For weather, the estimated heating degree day elasticities for all three models is about 

0.4, whereas the estimated cooling degree day elasticities are rather low; ranging from 0.04 for 

the TREM to 0.08 for the PM.  The estimated coefficient of household size suggests that as 

family size increases, there is a tendency to use less energy; indicating there are economies of 

scale with an estimated elasticity of -1.11 for the PM, -0.55 for the REM, and -0.45 for the 

TREM.  Whereas, for the share of detached houses the results suggest that there is only a 

marginal positive influence on US residential energy demand; the estimated coefficient for the 
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REM is not significantly different from zero, and although for the PM and the TREM the 

estimated coefficients are significantly different from zero, they are still rather low being 0.004 

and 0.002 respectively. 

 

For the PM the time dummies, as a group, are significant and the overall trend in their 

coefficients is negative as shown in Figure 1.  However, the estimated coefficients do not fall 

continually over the estimation period, reflecting the ‘non-linear’ impact of technical progress 

and other exogenous variables. The estimated coefficients for the REM and the TREM are 

almost identical to each other, both having a ‘similar’ pattern to the PM coefficients; 

nevertheless, they are both around zero reflecting that there are a lot less individual 

coefficients significantly different from zero for the PM and TREM. 

Figure 1: Estimated Time Dummy Coefficients (relative to 19995) 
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Table 4 provides descriptive statistics for the overall underlying US energy efficiency 

estimates of the 48 states obtained from the econometric estimation, showing that the estimated 

mean average efficiency is about 85% to 97% (median 85% to 98%). As discussed above, the 

TREM generally produces higher average values for the level of efficiency than the other 

models; probably due to the time-invariant country-specific energy inefficiency being captured 

by the individual random effects. Therefore, to the extent that there are certain sources of 

energy inefficiency that result in time-invariant excess energy consumption, the estimates from 

the TREM arguably provide imprecise estimates resulting in overestimated levels of energy 

efficiency. There is, therefore, a trade-off in the choice of the most appropriate estimator: the 

estimated coefficients from a PM could be affected by the so-called unobserved heterogeneity 

bias, whereas the estimated levels of efficiency obtained using the TREM could be imprecise, 

because they do not include the persistent inefficiencies that might remain constant over time. 

Furthermore, the REM suffers from two shortcomings; any unobserved, time-invariant, group-

specific heterogeneity is considered as inefficiency and the level of efficiency is not varying 

over time. Consequently, all further analysis focuses on the results obtained using the PM.20 

 
Table 4: Energy efficiency scores 

 PM REM TREM 
min 0.87 0.64 0.91 
max 0.98 0.99 0.99 
mean 0.95 0.85 0.97 
median 0.95 0.85 0.98 
st.dev. 0.02 0.08 0.01 

 

                                                 
20 It is worth noting, that the correlation coefficient between the level of efficiency obtained using the PM and the 
REM is (0.73) , the correlation coefficient between the level of efficiency obtained using the PM and the TREM is 
(0.42) , whereas the correlation coefficient between the level of efficiency obtained using the REM and the TREM 
is (0.02) 
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As discussed in Filippini and Hunt (2011) it is expected that the estimated underlying 

energy efficiency is negatively correlated with energy intensity.  Thus for most states it is 

expected that the level of energy intensity decreases with an increase of the level of energy 

efficiency, however, as Filippini and Hunt (2011) argue, if this technique were to be a useful 

tool for teasing out underlying energy efficiency then a perfect, or even near perfect, negative 

correlation would not be expected since all the useful information would be contained in 

standard energy intensity measures.  This proves to be the case with the estimates here.  The 

overall correlation coefficients between the estimated underlying energy efficiency measure 

from the PM and the energy intensity measures suggested by the EIA (1995) report being -0.4 

for ‘energy per capita’ and -0.5 for ‘energy per building’.  Furthermore, the mean correlation 

coefficient across the 48 states between the estimated underlying energy efficiency and the two 

intensity measures is -0.6.  Thus, as suggested, there appears to be a negative relationship, but 

it is by no means perfect. 

 

Nevertheless, of vital importance for US policy makers is the relative position across 

the states and if energy intensity is a good proxy for energy efficiency then would need to be a 

high (positive) correlation between the rankings of the energy intensity measures and the 

estimated underlying energy efficiency across the states.  However, this is not the case with the 

Spearman’s rank correlation coefficient across the 48 states being 0.4 for ‘energy per capita’ 

and 0.5 for ‘energy per building.  Table 5, Figure 2, and Figure 3 illustrate the rankings and 

clearly illustrate this relationship. 
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Table 5: Comparison of the Rankings for Estimated Underlying Energy 
Efficiency (from the PM) and Energy Intensity (1995-2007) 

 Estimated Underlying 
Energy Efficiency 

Energy Intensity 1 
(Energy per capita) 

Energy Intensity 2 
(Energy per building) 

  Level Rank Level Rank Level Rank 
Alabama  0.947  28  36.722 14 83.311  11

Arkansas  0.950  25  37.573 15 86.304  14

Arizona  0.971  2  25.837 3 61.553  2

California  0.972  1  25.162 1 69.252  3

Colorado  0.967  4  42.020 24 98.377  25

Connecticut  0.917  47  51.577 44 126.304  46

District of Columbia  0.953  20  40.415 21 84.933  13

Delaware  0.938  37  42.451 25 96.863  23

Florida  0.934  40  25.656 2 55.649  1

Georgia  0.940  35  36.464 12 89.593  17

Iowa  0.966  6  44.219 28 103.778  29

Idaho  0.963  10  38.273 18 93.386  19

Illinois  0.918  46  51.592 45 130.195  48

Indiana  0.944  32  47.477 37 112.154  40

Kansas  0.947  28  46.344 33 108.385  35

Kentucky  0.950  25  40.470 22 93.596  20

Louisiana  0.907  48  33.935 7 81.555  9

Massachusetts  0.929  41  48.428 41 116.997  45

Maryland  0.954  18  39.377 20 97.268  24

Maine  0.919  45  58.892 48 115.466  42

Michigan  0.928  42  54.991 47 127.686  47

Minnesota  0.966  6  48.127 40 112.322  41

Missouri  0.956  17  45.147 30 102.750  28

Mississippi  0.925  43  34.164 8 83.320  12

Montana  0.947  28  45.202 31 101.168  26

North Carolina  0.968  3  35.203 11 79.732  7

North Dakota  0.952  22  50.347 43 108.948  36

Nebraska  0.954  18  47.252 36 110.711  38

New Hampshire  0.951  24  47.488 38 106.235  31

New Jersey  0.936  39  45.714 32 115.739  43

New Mexico  0.967  4  33.667 6 78.951  6

Nevada  0.965  8  34.511 10 82.503  10

New York  0.942  33  43.057 26 106.783  33

Ohio  0.937  38  49.408 42 116.570  44

Oklahoma  0.945  31  41.712 23 94.828  22

Oregon  0.963  10  34.308 9 81.057  8

Pennsylvania  0.942  33  46.953 35 108.958  37

South Carolina  0.959  16  32.849 5 74.680  4

South Dakota  0.962  14  44.450 29 102.245  27

Tennessee  0.963  10  37.713 16 88.024  16

Texas  0.953  20  30.155 4 77.012  5

Utah  0.921  44  38.438 19 112.103  39

Virginia  0.964  9  37.905 17 91.481  18
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Vermont  0.940  35  51.661 46 105.923  30

Washington  0.963  10  36.638 13 87.567  15

Wisconsin  0.961  15  46.870 34 107.004  34

West Virginia  0.949  27  43.588 27 94.282  21

Wyoming  0.952  22  47.828 39 106.293  32

Note: A rank of 48 for underlying energy efficiency represents the least efficient state by this measure, whereas a rank of 1 
represents the most efficient state. A rank of 48 for energy intensity represents the most energy intensity state 
whereas a rank of 1 represents the least energy intensive state. 

 

Figure 2: Estimated Underlying Energy Efficiency (PM, 1995 - 2007) 

 

 

There are some states where the energy intensity measures would appear to be a good 

predictor of a state’s rank of the estimated underlying energy intensity, for both efficient and 

inefficient states.  For example, California is estimated to be the most efficient state according 

to the analysis above and is the state with the first and third lowest levels of ‘energy per capita’ 

and ‘energy per building’ respectively.  Whereas Illinois is estimated to be the 46th most 

efficient state and is ranked 45th and 48th respectively according to the ‘energy per capita’ and 

‘energy per building’ measures. 

0.880

0.900

0.920

0.940

0.960

0.980

1.000

C
a
lif
o
rn
ia

A
ri
zo
n
a

N
o
rt
h
 C
a
ro
lin
a

C
o
lo
ra
d
o

N
e
w
 M

e
xi
co

Io
w
a

M
in
n
es
o
ta

N
e
v
a
d
a

V
ir
g
in
ia

Id
a
h
o

O
re
g
o
n

T
en

n
e
ss
e
e

W
a
sh
in
g
to
n

S
o
u
th
 D
a
k
o
ta

W
is
co
n
si
n

S
o
u
th
 C
a
ro
lin
a

M
is
so
u
ri

M
a
ry
la
n
d

N
e
b
ra
sk
a

D
is
tr
ic
t 
o
f 
C
o
lu
m
b
ia

T
ex
as

N
o
rt
h
 D
a
k
o
ta

W
y
o
m
in
g

N
e
w
 H
a
m
p
sh
ir
e

A
rk
a
n
sa
s

K
e
n
tu
ck
y

W
e
st
 V
ir
g
in
ia

A
la
b
a
m
a

K
a
n
sa
s

M
o
n
ta
n
a

O
k
la
h
o
m
a

In
d
ia
n
a

N
e
w
 Y
o
rk

P
e
n
n
sy
lv
a
n
ia

G
e
o
rg
ia

V
e
rm

o
n
t

D
e
la
w
a
re

O
h
io

N
e
w
 J
e
rs
e
y

Fl
o
ri
d
a

M
a
ss
a
ch
u
se
tt
s

M
ic
h
ig
a
n

M
is
si
ss
ip
p
i

U
ta
h

M
ai
n
e

Il
lin
o
is

C
o
n
n
e
ct
ic
u
t

Lo
u
is
ia
n
a



US Residential Energy Demand and Energy Efficiency: A stochastic demand frontier approach  Page 20 of 24 

Figure 3: Energy Intensity 
a: Energy Intensity 1 (Energy per capita,  1000 Btu, 1995-2007) 

 

b: Energy Intensity 2 (Energy per building, 1000 Btu, 1995-2007) 
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However, there are also a number of states where the energy intensity measures would 

appear not to be a god predictor of a state’s rank of the estimated underlying energy intensity, 

for both efficient and inefficient states.  For example, Florida is ranked 2nd and 1st respectively 

according to the ‘energy per capita’ and ‘energy per building’ measures, but is only 40th 

efficient according to the analysis above.  Whereas Minnesota is ranked 40th and 41st 

respectively according to the ‘energy per capita’ and ‘energy per building’ measures, but found 

to be relatively more efficient according to the analysis above, being ranked 6th. 

 

 

5. Summary and Conclusion  

Building on Filippini and Hunt (2011) this research attempts to isolate core US 

residential energy efficiency for a panel of 48 states, as opposed to relying on simple measures 

of energy intensity, such as ‘energy per capita’ or ‘energy per building’.  The approach taken 

combines energy demand modelling and frontier analysis in order to estimate the ‘underlying 

residential energy efficiency’ for each state.  The energy demand specification controls for 

income, price, population, the number of housing units, heating degree days, cooling degree 

days, the share of detached housing, regional effects and an underlying energy demand trend in 

order to obtain a measure of ‘efficiency’ – in a similar way to previous work on cost and 

production estimation – thus giving a measure of underlying residential energy efficiency. 

 

The estimates for the underlying residential energy efficiency using this approach show 

that although for a number of states the change in the simple measures of energy intensity 

might give a reasonable indication of their relative energy efficiency (such as California and 
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Illinois); this is not always the case (such as Florida and Minnesota).  Therefore, unless the 

analysis advocated here is undertaken, US policy makers are likely to have a misleading 

picture of the real relative energy efficiency across the states and thus might make misguided 

decisions when allocated funds to various states in order to implement energy efficiency and 

conservation measures.  Hence, it is argued that this analysis should be undertaken in order to 

give US policy makers an additional indicator other than the rather naïve measure of energy 

intensity in order to try to avoid potentially misleading policy conclusions. 
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